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Abstract

Machine learning (ML) is demonstrating remarkable success in
various healthcare applications. The success of ML in healthcare
is inherently linked to the rigorous process of feature engineering
and feature selection, which truly forms the backbone of ML model
development. This study investigates the role of a well-known large
language model (LLM), the ChatGPT-4o, in feature selection and
classification processes for healthcare data, focusing on the explain-
ability of ML. The performance of ChatGPT-4o is evaluated and
compared to traditional ML methods—such as information gain
(IG), correlation-based feature selection (CFS), and principal compo-
nent analysis (PCA) for identifying relevant features in predictive
modeling. This comparison is conducted using two widely recog-
nized healthcare datasets, SEER and NSQIP. After evaluating the
features selected by classical ML methods and LLMs through expert
review, the results indicate that while ChatGPT-4o aligns closely
with expert evaluations and effectively provides contextual infor-
mation on healthcare datasets, traditional ML methods such as IG,
CFS, and PCA outperform in systematic feature ranking due to their
structured and data-driven nature. Furthermore, anonymization did
not significantly affect the feature selection process, highlighting
the robustness of ChatGPT-40 under privacy-preserving conditions.
ChatGPT-40’s strength lies in complementing these methods by pro-
viding interpretability and facilitating exploratory analysis, rather
than serving as a standalone solution for precise feature ranking.
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1 Introduction

In recent years, artificial intelligence (AI) and ML have emerged
as transformative tools in healthcare care, achieving significant
advances in various clinical applications, such as early diagnosis,
shared decision making, personalized treatment, and prediction of
patient outcomes [3, 11, 28, 36]. A key part of building accurate and
meaningful ML methods is to choose the right features from large
and complex datasets. This involves feature engineering and feature
selection. While feature engineering helps to create useful input
variables, feature selection ensures that only the most important
features are used in building ML models [15, 34, 39].

In the healthcare domain, where obtaining high-quality datasets
is both costly and complex, feature selection plays a significant role
in analyzing and extracting relevant information [23, 24, 30]. How-
ever, despite the successful adoption of AI/ML models in healthcare,
challenges persist regarding the interpretability and explainabil-
ity of these computational models [25, 35]. Understanding how
AI/ML algorithms make decisions, especially in post-hoc analyses,
provides essential insights into their reliability and accountabil-
ity, helping to advance the implementation and uptake of AI/ML
models.

This study investigates the emerging role of ChatGPT-4o, as
a novel tool for feature selection in healthcare. Using two widely
recognized healthcare datasets, including the Surveillance, Epidemi-
ology, End Results Program (SEER) [1] and the American College of
Surgeons National Surgical Quality Improvement Program (NSQIP)
[18]. We explore ChatGPT-40’s capability in feature selection and
ranking to enhance the interpretability and explainability of predic-
tive ML models. In this study, we define two key research questions
to guide our investigation:
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e RQ (1): Can ChatGPT-4o serve as an effective method for
feature selection comparable to classical ML-based feature
selection techniques, such as IG, CFS, and PCA?

e RQ (2): Does ChatGPT-4o rely on its pre-trained knowledge
to identify and select important features?

To address these questions, we design two experimental scenar-
ios. The first scenario evaluates the performance of ChatGPT-40
against traditional feature selection methods by assessing the rel-
evance of features selected for two healthcare datasets, including
SEER and NSQIP. This comparison provides insights into how well
ChatGPT-40 aligns with established techniques. The second sce-
nario investigates whether ChatGPT-40’s pre-trained knowledge
influences its feature selection. To test this, we evaluate its per-
formance using original and anonymized datasets, where feature
names are replaced with generic labels to remove contextual cues.
These scenarios allow us to comprehensively assess ChatGPT-40’s
effectiveness, robustness, and reliance on prior knowledge in the
feature selection process. With that, the significance of this work
lies in the following key contributions:

o Clinical Significance: By focusing on the crucial steps of
feature selection and feature importance, we aim to enhance
the applicability of ML models in healthcare settings. Our
exploration promises to contribute to more effective ML
models and holds the key to uncovering complex patterns
within healthcare data.

e Technical Significance: Our work specifically focuses on
the underexplored domain of ChatGPT-40 as an LLM. The

technical significance lies in exploring the potential of ChatGPT-

40 to rank important features, contributing to the inter-
pretability and explainability of ML models. This exploration
expands the toolkit available to data scientists working with
healthcare data, deepening our understanding of the synergy
between large language models (LLMs) and feature selec-
tion, and highlighting its significance in machine learning
applications.

The structure of this work is organized as follows. Section 2
provides a review of related literature. Section 3 details the materials
and methods employed. Experimental validation and results are
presented in Section 4. Finally, Section 5 discusses the contributions,
concluding the study with proposed future directions.

2 Related Work

This section primarily explores the utilization of LLMs in health-
care and includes a brief comparison of feature selection methods
relevant to our study.

2.1 LLMs Applications in Healthcare

In applying LLMs to healthcare settings, there are various ways to
classify the state of the art. For example, Li et al. [19] conducted a
systematic review of existing publications on the use of ChatGPT-4
in healthcare and proposed a two-sided taxonomy: application-
oriented and user-oriented. The taxonomy is based on the nature
of medical tasks, including triage, translation, medical research,
clinical workflow, medical education, consultation, and multimodal
mechanisms. Each task targets one or multiple end-user groups,

such as patients, healthcare professionals, and researchers. In an-
other study, Yu et al. [38] reviewed the literature on the integration
of generative Al and LLMs into healthcare and medical practices.
They presented their findings across various aspects, including
technological approaches to generative Al applications, methods
for training LLMs, model evaluation, current applications of gen-
erative Al and LLMs in healthcare and medicine, and regulatory
considerations. Furthermore, Yang et al. [37] provided a practical
guide for practitioners and end-users, demonstrating how to har-
ness the power of LLMs for various downstream Natural Language
Processing (NLP) tasks.

In this review, we classify previous works into two main groups.

e Development and Utilization of Domain-Specific Health-
care LLMs. This category focuses on building or fine-tuning
LLMs specifically for healthcare applications. Singhal et al.
[31] introduced MultiMedQA, a benchmark that combines
six existing datasets with a newly developed dataset, Health-
SearchQA, to evaluate the performance of LLM models, such
as PaLM [9] and its instruction-tuned variant, Flan-PaLM
[10]. The benchmark spans tasks ranging from professional
medical exams to consumer health queries. Another bench-
mark, Med-HALT, was proposed by Pal et al. [33] to assess
and mitigate hallucinations in medical LLMs. Med-HALT
introduces two key test categories: Reasoning Hallucination
Tests (RHTs), which measure a model’s logical coherence
and ability to avoid generating false information, and Mem-
ory Hallucination Tests (MHTs), which evaluate a model’s
accuracy in retrieving biomedical information. The dataset
includes over 18,000 samples sourced from diverse medical
exams and PubMed, ensuring comprehensive topic coverage
and geographic representation. The study compared several
models, including GPT-3.5, Falcon, and LLaMA-2, highlight-
ing notable differences in performance. For instance, Falcon
models excelled at fake question detection, while all mod-
els demonstrated room for improvement in memory-based
tasks. The research emphasized the importance of bench-
marks like Med-HALT in developing safer, more reliable
LLMs for healthcare applications. Similarly, Han et al. [14]
introduced MedAlpaca, an open-source collection of medical
conversational Al models and training datasets specifically
for healthcare applications. The framework fine-tunes Meta’s
LLaMA models (7B and 13B parameters) using a curated
dataset of over 160,000 medical entries, including medical
flashcards, Stack Exchange forums, WikiDoc content, and
the USMLE ! and CORD-19 2.

In addition to these benchmarks, BioGPT [21] is a gener-
ative pre-trained transformer model specifically designed
for biomedical text generation and mining tasks. Built on
the GPT-2 architecture, BioGPT is pre-trained on 15 million
PubMed abstracts and fine-tuned for downstream tasks, in-
cluding relation extraction, question answering, document

Uhttps://www.usmle.org/sites/default/files/2021-10/Step_1_Sample_Items.pdf
Zhttps://www.kaggle.com/datasets/allen-institute-for-ai/CORD- 19-research-
challenge
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classification, and biomedical text generation. It introduces
novel target sequence formats that leverage natural language
semantics, enhancing its ability to produce structured and
meaningful biomedical output. BioGPT outperforms state-
of-the-art models across several benchmarks, achieving top
performance in relation extraction and question answering,
while also demonstrating superior text generation capabili-
ties compared to general-purpose GPT-2.

Similarly, Guan et al. [12] proposed CohortGPT, an LLM-
based system designed to assist in clinical trial participant
recruitment by analyzing unstructured medical text, such as
radiology reports. CohortGPT combines medical knowledge
graphs with a Chain-of-Thought (CoT) reasoning approach,
which improves its ability to classify medical reports accu-
rately. By inferring disease-related details step-by-step, this
approach enables the system to enhance performance even
with limited labeled data. CohortGPT shows strong potential
for streamlining participant recruitment and other medical
text analysis tasks while requiring minimal training data. Ad-
ditionally, the ChatDoctor model [20], a fine-tuned version
of Meta’s LLaMA-7B large language model, was specifically
developed for medical applications. ChatDoctor was trained
using a dataset comprising 100,000 real-world patient-doctor
dialogues and an additional 10,000 dialogues for evaluation.
It improves the understanding of patient inquiries and deliv-
ers accurate medical advice by incorporating a self-directed
information retrieval system. This system enables access to
real-time data from reliable online and offline sources, such
as medical databases and Wikipedia, allowing the model to
address newer medical terms or conditions effectively. Chat-
Doctor outperforms ChatGPT in terms of precision, recall,
and F1 scores, particularly excelling in tasks that require
up-to-date medical knowledge or domain-specific expertise.

Integration of General-Purpose LLMs in Healthcare
Workflows. This category covers the practical deployment
of LLMs in healthcare settings, emphasizing real-world ap-
plications. Yu et al. [38] provided a comprehensive roadmap
for integrating generative Al and LLMs, such as ChatGPT,
into healthcare and medicine. The study explored their po-
tential applications, including improving decision-making,
automating workflows, and enhancing communication be-
tween patients and clinicians. It also examined technological
advancements, such as reinforcement learning from human
feedback (RLHF) and fine-tuning, along with ethical consid-
erations like bias and privacy, as well as challenges such as
hallucinations and regulatory requirements. Similarly, Toufiq
et al. [32] evaluated the use of LLMs, including GPT-3.5,
GPT-4, Claude, and Bard, to prioritize genes for inclusion in
biomarker panels derived from large-scale molecular profil-
ing. Their method involved using LLMs to analyze and score
candidate genes based on biological and clinical relevance,
followed by selecting the best candidates using a structured
workflow. The study demonstrated that LLMs could effec-
tively assist with these tasks, requiring minimal human in-
tervention, and confirmed their utility in knowledge-driven
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gene prioritization for clinical and research applications.

In addition to deployment strategies, Reddy et al. [26] pro-
posed a comprehensive evaluation framework to assess the
applicability of LLMs in healthcare, emphasizing transla-
tional value and governance. The framework introduces a
layered approach that combines traditional natural language
processing (NLP) metrics, such as perplexity, BLEU, and
ROUGE, with evaluations of capability, utility, and adop-
tion in real-world healthcare settings. Additionally, it incor-
porates a governance layer that addresses critical aspects,
including fairness, transparency, trustworthiness, and ac-
countability, to ensure the ethical and safe implementation of
LLMs. Furthermore, Banerjee et al. [4] investigated the inte-
gration of LLMs with classical ML methods, such as Random
Forest models, in healthcare applications. The study utilized
real-world data from the National Health and Nutrition Ex-
amination Survey (NHANES) to showcase the effectiveness
of Random Forest classifiers in predicting health conditions
like hypertension. Additionally, it evaluated how LLMs can
enhance tasks such as medical record abstraction and clinical
note summarization. The authors addressed key limitations
of LLMs, including bias and misinformation, and proposed
hybrid models that combined classical ML with advanced
language modeling to enable ethical and effective health-
care decision-making. Expanding on feasibility, Cascella et
al. [5] assessed the feasibility of using ChatGPT in health-
care across four scenarios: (1) supporting clinical practice by
generating structured medical notes for patients in the Inten-
sive Care Unit (ICU), (2) contributing to scientific writing by
drafting conclusions for abstracts based on the background,
methods, and results sections of research papers, (3) reason-
ing about public health topics, such as analyzing the concept
of seniority and proposing methods for assessing biological
age in perioperative contexts, and (4) examining potential
misuse in medicine, including both intentional and unin-
tentional exploitation of ChatGPT in clinical and research
settings. ChatGPT demonstrated its capabilities in summa-
rizing patient data, producing structured medical notes, and
drafting scientific abstracts. However, the study highlighted
limitations, including ChatGPT’s lack of domain-specific
knowledge, its inability to establish causal relationships and
significant ethical concerns regarding potential misuse.

2.2 Comparing Feature Selection Methods

Feature selection is a critical task in preparing data for ML algo-
rithms. It aims to identify a subset of features from the original
dataset that are relevant while minimizing redundancy. This process
involves constructing and selecting features that improve predic-
tive performance and enhance the interpretability of ML models
[22]. Feature selection methods can be categorized based on (1) ML
paradigms, such as supervised, unsupervised, and semi-supervised
approaches [34], (2) domain-specific applications, such as in medi-
cal contexts where selecting relevant predictors is crucial [6, 8, 27],
or (3) evaluation criteria [15]. Among these, classification based
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on evaluation criteria is the most prevalent, encompassing filter,
wrapper, embedded, hybrid, and ensemble methods [17, 39].

Filter methods are a category of feature selection techniques that
evaluate the relevance of features independently of a specific ML
model. Rather than relying on model training to evaluate feature
importance, these methods utilize the statistical or mathematical
properties of the data itself. Filters can be univariate, where indi-
vidual features are evaluated and ranked, or multivariate, where
subsets of features are analyzed for their combined relevance. These
methods are computationally efficient and highly scalable, making
them particularly suitable for high-dimensional datasets. However,
they may fail to capture interactions between features or account
for how the features affect the performance of a learning algorithm
[6, 34, 39].

Wrapper methods integrate feature selection with the ML pro-
cess, evaluating feature subsets based on the model’s performance
metrics, such as accuracy or error rate [15]. Wrappers often yield
better-performing subsets than filters because the evaluation in-
volves actual model training. However, they are computationally
expensive, as the model needs to be retrained repeatedly for differ-
ent feature subsets.

Embedded methods incorporate feature selection directly into
the ML algorithm.[39] By leveraging the algorithm’s internal prop-
erties, embedded methods guide feature evaluation during model
training, offering a balance between computational efficiency and
performance. Unlike wrappers, embedded methods avoid repeated
classifier execution, making them faster while maintaining high-
quality feature selection.

Recent advancements in feature selection include hybrid meth-
ods and ensemble methods [15]. Hybrid methods combine the
strengths of multiple approaches, such as pairing filter and wrapper
methods, to leverage their complementary advantages. Ensemble
methods, on the other hand, aim to improve stability and robustness
by applying feature selection techniques to various subsamples of
the dataset and aggregating the results. This approach creates more
consistent and reliable feature subsets [39].

These feature selection strategies are essential for reducing di-
mensionality, improving model performance, and making sure that
selected features are both relevant and interpretable for specific
ML applications.

3 Materials and Methods

3.1 Data Collection and Dataset Preparation

This study employs two publicly available datasets, including Surveil-
lance, Epidemiology, End Results Program (SEER) [1] and the Amer-
ican College of Surgeons National Surgical Quality Improvement
(NSQIP) [18]. Regarding the SEER dataset, we utilized the data
records available between the years 2004 to 2013. This study fo-
cuses on four different cancers within the SEER dataset, including
bladder, kidney, pancreas, and prostate, and the classification task
is cancer survivability prediction as discussed in Appendix A. The
second dataset is a cohort of 19,055 patients in the NSQIP data
repository who underwent primary total shoulder arthroplasty
(TSA) between 2016 and 2020 [18]. In this dataset, a collection of 21
predictors, including basic demographics, preoperative and intra-
operative variables, plus comorbidity and laboratory results have

been employed to predict 30-day unplanned reoperation following
primary TSA. The description of both datasets, including predictive
variables along with outcomes are presented in the Appendix A.

3.2 Proposed Approach

As outlined earlier, the primary objective of this study is to eval-
uate the feasibility of integrating one of the widely used large
language models (LLMs), ChatGPT-4o, into the feature selection
phase. This section provides a comprehensive description of our
proposed approach, detailing each step involved in the process.
Figure 1 illustrates the pipeline framework developed for this study.

3.2.1 Preprocessing. Preprocessing is an important step in any
data analysis pipeline, aimed at cleaning and transforming raw data
into a format suitable for further analysis or the development of
ML models. Due to the high quality of the current experimental
datasets, which are derived from our prior works detailed in [18, 29],
additional data-cleaning procedures are unnecessary in this study.
Consequently, the preprocessing phase is limited to tasks such as
data discretization and feature anonymization.

Data Discretization: To reduce the impact of small variations in
the data, and to effectively reflect the distribution of target classes,
we have converted continuous data into discrete intervals. It helps
create more robust models by grouping similar values into intervals
and reducing the influence of minor fluctuations that allow models
to learn more generalized patterns.

Feature Anonymization: We began by examining all features
to identify and eliminate redundancies that could potentially af-
fect the performance of the ML classification models. Redundant
features fail to contribute new information and may unnecessarily
increase the model’s complexity, potentially degrading its overall
efficiency and interoperability. On the other hand, including fea-
tures that are perfectly correlated with the target class or label, in
our case cancer survivability or readmission following TSA, can lead
to overfitting, where the ML model performs well on the training
data but generalizes poorly to new, unseen data. For example, in
SEER datasets, two features, vital status code and cause of death
code, are highly correlated with the label/outcome (e.g., survived
code). Removing these perfectly correlated features is essential, as
it also helps improve the ML model’s robustness, reliability, inter-
pretability, and generalization ability, leading to better performance
on unseen data. Subsequently, we implemented a rigorous feature
anonymization process, replacing the original feature names with
generic labels such as F1, F2, and so on. This step is designed to
evaluate the capability of ChatGPT-4o0 in feature selection under
two distinct conditions: (1) using the original dataset with meaning-
ful feature names, and (2) an anonymized version where contextual
information from feature names is removed. We will test how well
the LLM can find important features by running experiments on
both the original and anonymized datasets. This will help us see
how it performs when feature details are hidden.

3.2.2 Feature Selection. Feature selection and engineering is a
crucial stage in the data science pipeline, aimed at improving the
quality of features to enhance the performance of Al models. This
process involves applying various techniques to transform, create,
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Figure 1: The proposed pipeline in this study illustrates the sequential stages of data processing, including preprocessing, feature
selection (using both classic methods and ChatGPT-4o0 as an LLM-based approach), and evaluation through expert review.

or select features that contribute to better predictive accuracy and
ML model efficiency. In this section, we outline two experimental
setups designed specifically for feature selection.

Classic Feature Selection: In the first approach, we aim to
construct a subset of features as small as possible that represents
the critical input features. We use a combination of feature selection
and feature extraction methods to inherit the advantages of different
metrics. These computational methods are:

e Information Gain (IG): IG serves as a univariate filter method
that quantifies the information gained about a target variable
by considering the values of a specific feature [16].

e Correlation-based Feature Selection (CFS): CFS is a multi-
variate statistical measure that assesses the strength and
direction of the relationship between two variables, indi-
cating how one variable changes with changes in another
variable [13].

e Principal Component Analysis (PCA): PCA, is a popular
dimensionality reduction technique that can transform high-
dimensional data into a lower-dimensional space while re-
taining the essential information [2].

By using these methods, we generate various subsets of features,
providing a robust foundation for comparing our results with those
derived from the LLM.

LLM-based Feature Selection: ChatGPT has been adapted for
various NLP tasks through different prompting methods. One no-
table method is Instruction Prompting, which involves giving LLMs
specific task instructions to guide their responses. This method
was explored in the LEAP Framework for clinical relation extrac-
tion, which combined instructional and example-based adaptive
prompts to significantly improve F1 scores on clinical datasets
[41]. Another innovative approach is Chain-of-Thought Prompting,
which enhances temporal reasoning by breaking down complex

tasks into smaller steps. This was demonstrated in the Grounding-
Prompter method for temporal sentence grounding in long videos,
which utilized a multiscale denoising chain-of-thought strategy to
integrate global and local semantics for improved performance [7].
Additionally, the Hierarchical Step-by-Step (HiSS) Prompting method
showed effectiveness in fact verification by separating claims into
sub-claims and verifying each progressively, outperforming previ-
ous supervised models [40]. These methods highlight the diverse
and evolving strategies in LLM prompting to enhance model accu-
racy and applicability.

In this study, we chose the Instruction Prompting method using
ChatGPT-4o for several reasons. First, it aligns well with the nature
of our task, which requires ChatGPT-4o to focus on specific fea-
tures within the data and understand their relevance in the context
of feature selection. It also provides a clear and concise direction
that helps the model focus on the task at hand, ensuring that the
outputs are relevant and accurate. Moreover, The versatility of In-
struction Prompting allows for easier adaptation and fine-tuning
of the prompts based on the initial responses from the LLM. This
adaptability is crucial for iterative experimentation, enabling us to
refine the prompts to better suit the specific requirements of our
feature selection tasks.

Overall, Instruction Prompting offers a structured and effective
approach for guiding the LLM, making it the preferred choice for
our experiments in feature selection within health data science. In
addition to experimenting with various prompting techniques, we
perform analyses using both the original and anonymized datasets.
The objective is to evaluate how the presence or absence of feature
context influences the LLM’s capability to identify relevant features,
thereby examining its robustness and adaptability when feature
metadata is obscured.
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3.2.3 Evaluation. In this phase, we undertake a comprehensive
evaluation of the features selected by various methods, with “do-
main experts review” serving as a central component. The evalu-
ation compares the features identified by traditional techniques,
including IG, CFS, and PCA, with those selected by ChatGPT-40
using both original and anonymized datasets. These are further com-
pared against the ground truth established by the domain experts
to assess the relevance, interpretability, and clinical significance of
each feature within the context of the datasets and the classification
task.

4 Experimental Validations and Results

This section provides a solid experimental framework that analyzes
and compares the ability of an LLM, specifically ChatGPT-40 in
performing feature selection as part of feature engineering. The
experiments are designed to achieve two primary objectives. First,
to evaluate ChatGPT-40’s effectiveness in feature selection com-
pared to classical ML methods, including IG, CFS, and PCA. Second,
to assess the impact of ChatGPT-40’s pre-trained knowledge on
its feature selection performance, particularly by examining its
behavior in scenarios using original data versus anonymized data.

To address these goals, we design and conduct two experiments.
In the first experiment, we utilize traditional feature selection tech-
niques, such as IG, CFS, and PCA, to identify key features from
the SEER and NSQIP datasets. These methods provide a structured
and data-driven baseline for comparison. In the second experiment,
we leverage ChatGPT-4o capabilities to perform feature selection,
analyzing its ability to rank features from the same datasets. To-
gether, these experiments provide a comprehensive evaluation of
ChatGPT-40’s performance in feature selections.

4.1 Experimental Setup and Test Bed

The experimental setup involved conducting feature selection tasks
and subsequent analysis using the specified configuration. Python
3.11 was utilized as the primary programming language for imple-
menting feature selection algorithms and performing data analysis.

The test bed comprised a series of experiments aimed at evalu-
ating the performance of feature selection methods, particularly
within the context of ML tasks. The Random Forest algorithm, con-
figured with 100 estimators and using the Gini criterion, served as
the benchmark model for comparison. The machine configuration
comprises an Ubuntu 23.10 operating system running on an AMD
Ryzen™ 9 5900HX processor with 16 cores and 32.0 GB of memory.
For GPU capabilities, it employs an NVIDIA GeForce RTX 3060 and
CUDA version 12.2. In terms of programming, Python 3.11 is the
language of choice within the ChatGPT environment, accessed via
WebUL

4.2 First Experiment: Identifying Key Features
Through Classical ML Methods

This experiment focuses on using well-established ML-based fea-
ture selection techniques, including IG, CFS, and PCA, to identify
the most important features in the SEER and NSQIP datasets for a
classification task. These methods apply systematic and data-driven
approaches, each of which applies its unique criteria to evaluate
and rank features based on their relevance to the predictive task. IG

focuses on the information-theoretic relevance of each feature, CFS
assesses the correlation between features and the target variable
while minimizing redundancy, and PCA transforms the data to high-
light components that capture the maximum variance. The results
from all three classical ML methods serve as a baseline for compari-
son with Al-driven approaches using ChatGPT-40 examined in the
second experiment.

For both experimental datasets, including (a) SEER, and (b) NSQIP,
the results of this experiment are presented in Table 1. Initially, the
top ten features were selected for each dataset based on their rank-
ings as determined by IG, CFS, and PCA. Subsequently, the overlap-
ping features among the top selections from these methods were
identified and highlighted, showcasing the features consistently
recognized as important across multiple techniques.

4.3 Second Experiment: Identifying Key
Features Through ChatGPT-40

This experiment investigates the capability of ChatGPT-4o to per-
form feature selection by analyzing and ranking the features in the
SEER and NSQIP datasets. We also investigate whether ChatGPT-
40’s feature selection relies on its pre-trained knowledge or the
inherent structure of the data. Therefore, ChatGPT-4o is evaluated
in two contexts: (1) using the original datasets with intact and
original feature names, and (2) anonymized datasets where feature
names are replaced with generic labels.

To extract important features of SEER datasets using ChatGPT-
40, we designed a structured prompt asking the model to analyze the
features in each dataset and rank them based on their importance
for predictive modeling. The prompt included relevant context
about the dataset, the target variable (cancer survivability), and the
objective of feature selection. The model then provided a ranked
list of features, with the ranking reflecting its judgment of each
feature’s significance in predicting cancer survivability. Following
this, we selected the top ten features from each of the four SEER
datasets. Then, the selected features are compared across all four
datasets, and those that appear in at least two of the feature sets are
identified as consistently important. To test whether ChatGPT-40’s
feature selection relies on its pre-trained knowledge, this process
was repeated using an anonymized dataset, where feature names
are replaced with generic labels (e.g., F1, F2).

After conducting experiments for both experimental datasets,
SEER and NSQIP, the most important features are identified, as
presented in Table 2.

4.4 Results Analysis

This section evaluates the experiment outcomes using qualitative
analysis with domain expert reviews, which are explained below.

4.4.1 Qualitative Evaluation. The goal of this qualitative evalu-
ation is to analyze and understand the most critical features identi-
fied by different feature selection methods, highlighting patterns
of consistency and significance. In the first experiment, we identify
the features that overlap across these methods, focusing on those
consistently selected by all three. As summarized in Table 1, the
performance of classical ML-based methods remains consistent
across both datasets, with a significant degree of overlap in the fea-
tures they prioritize. This indicates that these methods are robust
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Table 1: The most important features identified by three classical ML-based feature selection methods, including IG, CFS, and
PCA. Each method ranks the features based on its respective importance criteria, and the top ten features for each dataset are
selected. The overlapping features among these top selections are then identified and presented. Checkmarks indicate features
selected as important by all three methods.

(a) Common important features of SEER datasets selected by IG, CFS, and PCA.

Dataset Age Tumor Extension Summary Stage Regional Nodes Regional Nodes Lymph Histologic Type
size Examined Positive Nodes

SEER Bladder v v v v v

SEER Kidney v v v v v v

SEER Pancreas v v v v

SEER Prostate v v

(b) Common important features of NSQIP dataset selected by IG, CFS, and PCA.

NSQIP Sex Age Smoke Steroid BMI

Table 2: The most important features identified by ChatGPT-40 with numerical values, which indicate the rank of each feature.
First, the features of each dataset are ranked based on their importance criteria. Next, the top ten features are identified for each
dataset. Finally, features that appear in at least two of four selected feature sets are identified and presented as important features.

(a) Common important features of SEER datasets selected by ChatGPT-4o.

Bladder Kidney Pancreas Prostate
Feature Original ~ Anonymized | Original =~ Anonymized | Original =~ Anonymized | Original =~ Anonymized
Summary stage 1 1 1 1 2
Lymph nodes 2 3 2 3 5 5 1 3
Regional nodes posi- 3 4 5 5 7 6 3 1
tive
Extension 4 2 3 4 3 3 5 7
Tumor size 5 5 6 5
Metastasis at diagno- 6 4 2
sis
Age 7 6 6 4 4 4
Grade 6 6 1 2
Histologic type 4 7 2 2
(b) Important features of NSQIP dataset selected by ChatGPT-40
Dataset Mode BMI Age Diabetes Race Ethnicity Sex Hypermed Smoke
Original 1 2 3 4 5 6 7 8
NSQIP -
Q Anonymized 1 2 3 4 5 6 7 8

in identifying critical attributes within the datasets. In the second
experiment, the model’s behavior differed slightly between the two
experimental datasets. For the SEER dataset, ChatGPT-40 ranked
features for four types of cancer: bladder, kidney, pancreas, and
prostate, with some variability observed between the original and
anonymized datasets. Key features such as Summary Stage, Lymph
Nodes, Regional Nodes Positive, and Extension consistently ranked
among the top in both modes, with Summary Stage maintaining
its position as the most important feature across all cancer types

except pancreas, where it still held a high rank. However, other
features, including Tumor Size, Histologic Type, and Metastasis at
Diagnosis, showed differences in rankings between the original and
anonymized datasets. For instance, Tumor Size, which was highly
ranked in the original dataset for bladder cancer, presented a de-
crease in its rank in the anonymized mode, reflecting the influence
of feature names on the model’s prioritization process.

For the NSQIP dataset, ChatGPT-40 showed remarkable con-
sistency in feature selection between original and anonymized
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modes. Unlike the SEER dataset, which showed some variability,
the NSQIP dataset results suggest that ChatGPT-40 can perform
equally well without feature name metadata. This could be due
to the stronger statistical signals within the NSQIP dataset or the
less ambiguous nature of its features. For example, features such as
BMI, Age, Diabetes, Race, and Sex were ranked identically in both
modes, suggesting that ChatGPT-4o relied more on the inherent
patterns within the data rather than the contextual information
from feature names. This indicates robust performance in datasets
where statistical relationships dominate over contextual cues.

In conclusion, while classical ML-based methods remain consis-
tent across both datasets, ChatGPT-4o exhibited differing behaviors
across the SEER and NSQIP datasets. The SEER dataset demon-
strated some variability in feature rankings between original and
anonymized modes. In contrast, the NSQIP dataset showed remark-
able consistency between the two modes.

4.4.2 Expert Review. The goal of this evaluation with keeping
domain experts-in-the-loop is to assess the performance of classi-
cal ML-based methods and ChatGPT-40 in the feature selection
process through domain expert knowledge. We have targeted do-
main experts with relevant expertise in the following areas: (1)
Healthcare professionals with relevant clinical expertise, and (2)
Health data scientists who are experts in analyzing and interpreting
complex medical data.

A panel of experts, consisting of three healthcare professionals
and two health data scientists, has been invited to participate in
the survey to provide their insights on the most critical features for
predicting outcomes in the given datasets. For the NSQIP dataset,
the experts were asked: “In your opinion, which of the features
listed in the following table are the most important for predicting
30-day unplanned reoperation following primary Total Shoulder
Arthroplasty (TSA)?" Similarly, for the SEER dataset, the experts
addressed the question: “In your opinion, which of the features
listed in the following table are the most important for predict-
ing cancer survivability, including Bladder, Kidney, Pancreas, and
Prostate cancer?”

To ensure unbiased evaluations, the experts independently as-
sessed the features without discussing the questions or their re-
sponses with one another. Furthermore, they were not informed
about the features selected by each of the feature selection methods.
The features selected by different methods and by domain experts
for the SEER dataset and the NSQIP dataset are presented in Ta-
bles 3 and 4, respectively. As shown in both tables, the majority
of features selected by classical Ml-based methods, including IG,
CFS, and PCA, are also recognized by domain experts as important
and meaningful predictive variables. This alignment suggests that
these methods are effective in identifying key features. For example,
in Table 3, out of the nine most important features selected by all
classical ML-based feature selection methods, seven features, such
as Age, Histologic Type, Summary Stage, Tumor Size, Extension, and
Regional Nodes Positive, were also identified as important by all
the domain experts. Also, two features, such as Lymph Nodes and
Regional Nodes Examined, were selected by 80% of the experts. Sim-
ilarly, for the NSQIP dataset, as indicated in Table 4, the majority of
features selected by classical ML-based feature selection methods
were also recognized as important by the experts.

The analysis also reveals that ChatGPT-4o performs well in iden-
tifying key features, aligning closely with classical ML-based meth-
ods and expert evaluations, particularly for high-priority variables.
However, its occasional variability in complex datasets (e.g., SEER)
and limitations in capturing secondary but clinically relevant fea-
tures suggest that it is best used as a complementary tool rather
than as a standalone method for feature selection.

4.4.3 Analysis of Two Experiments Addressing the Research
Questions. To address the first research question of our study,
“Can ChatGPT-4o serve as an effective method for feature selec-
tion comparable to classical ML-based feature selection techniques,
such as IG, CFS, and PCA??”, ChatGPT-40 has been evaluated for its
general applicability as a feature selection tool by comparing its per-
formance with traditional methods such as IG, CFS, and PCA. The
focus was on understanding whether the LLM could align with es-
tablished approaches to select critical features in different datasets.
This experiment revealed that ChatGPT-40 demonstrated strong
potential as a complementary tool, particularly in identifying high-
priority features that were also validated by domain expert reviews.
However, its variability with less prominent features highlighted
its limitations in systematic feature selection compared to the more
deterministic and structured approaches of traditional ML-based
methods. The results suggest that while ChatGPT-4o offers inter-
pretive insights, it may not yet be suitable as a standalone method
for feature selection, especially in high-stakes settings or clinical
applications where consistency is crucial.

To address the second research question, “Does ChatGPT-4o rely
on its pre-trained knowledge to identify and select important fea-
tures?”, we have evaluated the effect of feature anonymization on
ChatGPT-40’s feature selection performance. The data anonymiza-
tion experiment demonstrated that ChatGPT-40 could perform
consistently well with anonymized datasets, particularly for NSQIP,
where statistical signals were strong. This result suggests that the
model relies less on feature names and pre-trained knowledge when
data patterns are clear and unambiguous. However, in more com-
plex datasets, such as SEER, some variability emerged, indicating
that contextual information provided by feature names influenced
the model’s ability to rank features effectively. The two experi-
ments provide complementary insights into ChatGPT-40’s capa-
bilities. While the applicability experiment highlights ChatGPT-
40’s potential for interpretive and exploratory feature selection,
the anonymization experiment reveals its ability to generalize
in privacy-preserving settings, albeit with some dependence on
dataset-specific characteristics.

5 Discussion, Conclusion, and Outlook

This section further explores the implications of our current find-
ings and outlines future directions to expand upon this work.

5.1 Key Insights and Observations

1. ChatGPT-40 demonstrates potential in identifying key
features for healthcare datasets but exhibits variability and
limitations in feature ranking that prevent its use as a stan-
dalone feature selection tool. The results from the SEER and
NSQIP datasets reveal that ChatGPT-40 can identify key features
relevant to predicting outcomes, with features like Summary Stage,
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Table 3: The features selected by IG, CFS, PCA, ChatGPT-40, and domain experts for the SEER dataset are presented, with the last
column indicating the percentage of experts who identified each feature as important. The numbers under “LLM Original” and
“LLM Anonymized’, represent the frequency with which each feature appeared among the important features across the SEER

datasets.
Feature IG CFS PCA LLM Original LLM Experts (%)
Anonymized
Age v v v 3 3 100
Histologic type v v v 2 2 100
Summary stage v v v 3 3 100
Tumor size v v v 2 3 100
Extension v v v 4 4 100
Metastasis at diagnosis v v 2 1 100
Regional nodes positive v v v 4 4 100
Radiation 80
Lymph nodes v v v 4 4 80
Regional nodes examined v v v 80
Grade 2 2 80
Primary site v 40
Survival months 0
Vital status code 0
Race 20
Site-specific surgery code v v 20
Year of diagnosis 20
Month of diagnosis 0
Cause of death 0
Marital status 0
Sex v 0
Behavior code 0

Lymph Nodes, and Age consistently ranked as important across
multiple sub-datasets. While the model demonstrated robustness
by maintaining similar rankings in original and anonymized ver-
sions of the datasets, variability in the importance of less prominent
features highlights its reliance on implicit patterns and dataset con-
text. For the NSQIP dataset, critical features such as BMI, Age, and
Diabetes were consistently identified. However, ChatGPT-40’s selec-
tions occasionally lacked domain-specific reasoning. The variability
and inconsistencies observed across datasets suggest that while
ChatGPT-4o0 can provide useful exploratory insights, it is not yet
suitable as a standalone tool for reliable feature selection in sensi-
tive applications like healthcare. Its strengths lie in complementing
traditional methods rather than replacing them.

2. ChatGPT-4o0 primarily relies on data-driven patterns for
feature selection, focusing on intrinsic statistical relation-
ships and structural properties within the dataset rather than
leveraging its pre-trained knowledge. The evidence suggests
that ChatGPT-4o0 does not heavily rely on pre-trained knowledge
when feature names are anonymized, particularly for datasets with
strong statistical patterns, such as NSQIP. In such cases, the model
appears to prioritize features based on intrinsic data-driven patterns.
These patterns involve analyzing statistical relationships, such as
correlations between features and the target variable, feature vari-
ances, and inter-feature dependencies. For example, features like
BMI, Age, and Diabetes were consistently ranked as important in

both original and anonymized modes, indicating that their inher-
ent statistical relevance within the dataset guided their selection,
independent of contextual metadata.

However, the variability observed in the SEER dataset suggests
that pre-trained knowledge may still play a role in contexts where
datasets are more complex or feature relationships are subtle. For
example, features like Tumor Size and Histologic Type showed differ-
ences in rankings between original and anonymized modes, imply-
ing that contextual cues from feature names influenced the model’s
prioritization in these cases. This contrast shows the delicate bal-
ance between using data-driven selection and relying on pre-trained
semantic understanding in complex datasets. Thus, while it cannot
be definitively stated that ChatGPT-4o is entirely independent of
pre-trained knowledge, its performance demonstrates a significant
reliance on data-driven patterns for feature selection. These pat-
terns allow the model to identify important features based on their
statistical properties and relationships within the data, especially
in scenarios where explicit contextual information is unavailable.

3. The effectiveness of ChatGPT-40’s feature selection is
influenced by the characteristics of a dataset, highlighting
the importance of tailoring its application to specific data
contexts. The variability in ChatGPT-40’s performance across the
SEER and NSQIP datasets underscores the role of dataset character-
istics in determining its effectiveness as a feature selection tool. In
a dataset like NSQIP, which has clear statistical patterns and less
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Table 4: The features selected by IG, CFS, PCA, LLM, and experts for the NSQIP dataset. The last column indicates the percentage of

experts who identified each feature as important.

Feature IG CFS PCA LLM Original LLM Experts (%)
Anonymized
BMI v N4 v v v 100
Dialysis 100
Age v N4 v v v 80
Steroid v N v 80
Smoke v v v v v 80
Fnstatus2 80
Transfus 60
Bleedis v 60
Hxchf v 60
Diabetes v v v v 60
Dyspnea v v 40
Hxcopd v v 40
Discancr 40
Sex v v v v v 20
Race v v v v 0
Anesthes v 0
Inout 0
Hypermed v v v v 0
Wiloss 0
Ascites 0
Ethnicity v v v 0

ambiguous features, ChatGPT-40 performed consistently across
original and anonymized modes, demonstrating its ability to pri-
oritize features based on intrinsic data relationships. However, in
the more complex SEER dataset, which involves complicated fea-
ture relationships and context-specific variables, the model showed
inconsistencies in feature rankings between the original dataset
and its anonymized modes. This suggests that while ChatGPT-40
excels in scenarios with well-defined data structures, its reliance
on contextual metadata or pre-trained knowledge becomes more
evident when handling intricate datasets. These findings highlight
the need for careful consideration of dataset complexity and context
when applying ChatGPT-4o for feature selection, as its strengths
and limitations may vary depending on the nature of the data.

5.2 Limitation

A key limitation of this study lies in the variability of ChatGPT-40’s
performance across datasets and experimental conditions. While
the model showed consistency in identifying critical features in
datasets with clear statistical patterns, such as NSQIP, it exhibited
variability in more complex datasets like SEER, particularly when
feature names were anonymized. This suggests that ChatGPT-4 may
partially rely on contextual information or pre-trained knowledge
to interpret feature importance, which could limit its generalizabil-
ity in scenarios requiring strict anonymization or privacy.
Another limitation is the reliance on expert reviews, which,
while valuable and well-established, may introduce subjectivity in
assessing feature relevance. Furthermore, the absence of a system-
atic quantitative framework for evaluating the interpretability and

robustness of ChatGPT-40’s feature selection amplifies this limita-
tion, making it challenging to objectively compare its performance
across different scenarios.

5.3 Outlook

Our future research will expand on this study by addressing several
key areas to enhance the understanding and application of LLMs in
feature selection. One important direction is testing other LLMs to
compare their performance in feature selection tasks. This would
provide valuable insights into whether the observed behaviors are
specific to ChatGPT-40 or represent a broader characteristic of
LLMs in general.

Additionally, integrating ChatGPT-40 with traditional feature
selection methods could lead to hybrid approaches that leverage the
strengths of both LLMs and data-driven techniques. For instance,
combining statistical methods, such as PCA, with the interpretive
capabilities of LLMs may improve both feature selection accuracy
and explainability.

Finally, the development of quantitative frameworks for evaluat-
ing feature selection, such as standardized metrics for interpretabil-
ity, consistency, and robustness, would provide a more objective
basis for comparing LLMs (e.g., ChatGPT-40) with traditional meth-
ods and other advanced Al-driven techniques. Together, these di-
rections can contribute to a deeper understanding and broader
applicability of LLMs in feature selection and downstream data
science tasks.
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6 Data Availability

All Python codes along with the supplementary materials are avail-
able at: https://github.com/pitthexai/LLMs_Explainable_Feature_
Engineering. This GitHub repository is publicly and freely available
for academic, research, and educational purposes.
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A Appendix
Table 5: Features of the SEER datasets to predict cancer survivability.

No. Feature Description Data values (% frequency)

1 Marital status Marital status at diagnosis ~ [2(75.7%), 1(9.9%), 4(7.5%), 5(6.2%), 3(0.7%)]

2 Race Race [1(85.6%), 2(8.05%), 6(1.4%), 5(1.3%), 4(0.9%), 96(0.5%), 8(0.5%),

7(0.4%), 3(0.3%), 10(0.3%), 16(0.2%), others(0.5%)]

3 Sex The sex of the patient at di- [1(80.4%), 2(19.6%)]
agnosis

4 Age Age at diagnosis [65(4.2%), 63(4.2%), 60(4.1%), 61(4.05%), 59(4.03%), 66(4.0%),

58(3.9%), 67(3.9%), 64(3.8%), 62(3.8%), 68(3.5%), others(56.5%)]

5 Year of diagnosis Year of diagnosis [2008(22.4%), 2007(21.7%), 2006(18.9%), 2005(18.6%), 2004(18.4%)]

6 Primary site The site in which the pri- [C619(50.9%), C649(14.8%), C250(14.1%), C679(4.2%), C678(2.7%),
mary tumor originated C252(2.3%), C672(2.2%), C659(1.6%), C251(1.2%), C674(1.1%),

C258(1.0%), others(3.9%)]

7 Histologic type Form of tumor [8140(59.8%), 8310(8.2%), 8120(8.2%), 8500(6.3%), 8130(4.7%),
8312(2.6%), 8260(1.2%), 8550(1.2%), 8246(0.9%), 8480(0.8%),
8318(0.7%), others(5.5%)]

8 Behavior code Code based on aggressive- [3(99.7%), 2(0.3%)]
ness of tumor

9 Grade Category based on the ap- [3(51.0%), 2(33.7%), 4(11.05%), 1(4.3%)]
pearance of tumor

10 Site-specific surgery code Code for surgery of primary  [50(63.9%), 37(9.8%), 61(4.8%), 30(4.3%), 60(4.1%), 71(2.5%),
site as first course of therapy  40(2.05%), 70(2.05%), 36(1.9%), 0(1.1%), 35(1.0%), others(2.6%)]

11 Radiation Method of radiation therapy  [0(86.9%), 1(11.8%), 8(0.6%), 7(0.5%), 5(0.2%), 4(0.02%), 3(0.01%),
used in the first course of 2(0.01%)]
treatment

12 Summary stage Defined according to the [1(46.8%), 2(45.3%), 7(7.4%), 0(0.4%)]
spread of cancer

13 Tumor size Tumor size in mm [20(6.9%), 15(6.1%), 30(5.8%), 25(4.8%), 40(4.4%), 10(4.3%),

35(4.0%), 50(3.2%), 12(2.6%), 18(2.3%), 45(2.3%), others(53.2%)]

14 Extension Information on extension of [150(27.8%), 100(10.1%), 300(8.6%), 400(7.4%), 600(6.04%),
tumor 230(5.9%), 440(5.8%), 200(5.03%), 210(4.2%), 411(3.1%), 220(3.1%),

others(12.9%)]

15 Lymph nodes The highest specific lymph  [0(77.5%), 100(17.9%), 200(1.9%), 400(1.2%), 800(0.5%), 110(0.3%),
node chain that is involved 500(0.3%), 210(0.1%), 700(0.1%), 300(0.1%), 250(0.1%), oth-
by the tumor ers(0.1%)]

16 Metastasis at diagnosis Information on distant [0(94.2%), 40(4.8%), 55(0.3%), 10(0.3%), 11(0.1%), 50(0.1%),
metastasis 30(0.1%), 12(0.01%), 60(0.00%)]

17 Regional nodes positive Number of regional lymph  [0(77.9%), 1(8.5%), 2(4.6%), 3(2.6%), 4(1.8%), 5(1.2%), 6(0.8%),
nodes that contained metas- 7(0.7%), 8(0.5%), 9(0.3%), 10(0.2%), others(0.9%)]
tases

18 Regional nodes examined Number of regional lymph  [2(14.5%), 1(10.4%), 3(8.7%), 4(8.1%), 5(7.1%), 6(6.0%), 7(5.3%),
nodes removed and exam- 8(4.6%), 9(4.0%), 10(3.5%), 11(3.1%), others(24.7%)]
ined

20 Month of diagnosis Month of diagnosis [3(8.8%), 7(8.7%), 10(8.6%), 4(8.5%), 11(8.3%), 1(8.3%), 6(8.3%),

5(8.3%), 12(8.2%), 9(8.1%), 8(8.04%), others(8.0%)]

21 Survival months Survival months Multiple categories

22 Vital status code Vital status code [1(69.7%), 4(30.3%)]

23 Cause of death Cause of death to SEER site  [0(69.7%), 21100(16.4%), 29010(6.7%), 29020(6.7%), 28010(0.6%)]
recode

25 Survived code (label) Survival status (Yes/No) [yes(69.7%), no(30.3%)]
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Table 6: Features of the NSQIP dataset to predict 30-day unplanned reoperation following primary TSA.

No. Feature Description Data values (% frequency)

1 BMI Body mass index (kg/m2) Numeric values

2 Age Age [72(4.7%), 69(4.6%), 73(4.5%), 70(4.5%), 71(4.5%),
68(4.2%), T4(4.2%), 67(4.0%), 76(4.0%), 65(3.9%),
75(3.8%), others(53.2%)]

3 Sex Sex [£(55.8%), m(44.2%)]

4 Race Race [w(83.3%), unknown/not reported(10.8%), b(4.4%),
asn(0.8%), a(0.5%), native Hawaiian or pacific is-
lander(0.1%), others(0.03%), n(0.03%), combina-
tions with low frequency(0.01%)]

5 Hypermed Hypertension requiring medication [yes(66.4%), no(33.6%)]

6 Dyspnea Dyspnea [n0(93.2%), moderate exertion(6.5%), at rest(0.3%)]

7 Diabetes Diabetes mellitus [no(81.7%), non-insulin(13.0%), insulin(5.3%)]

8 Fnstatus2 Functional health status prior to Surgery [independent(96.9%), partially dependent(1.9%),
unknown(1.1%), totally dependent(0.1%)]

9 Hxcopd History of severe chronic obstructive pulmonary disease [n0(92.9%), yes(7.1%)]

10 Smoke Current smoker within the 12 months prior to surgery  [N0:90.01%, Yes:9.99%]

11 Anesthesia Principal anesthesia technique [general(96.8%), regional(1.8%), mac/iv seda-
tion(0.9%), other(0.3%), spinal(0.1%), local(0.04%),
epidural(0.02%), unknown(0.02%)]

12 Inout Inpatient or outpatient setting [in(87.5%), out(12.5%)]

13 Bleedis Bleeding disorders [n0(97.4%), yes(2.6%)]

14 Steroid Steroid or immunosuppressant use for a chronic condi- [no(95.1%), yes(4.9%)]

tion

15 Hxchf Congestive heart failure [n0(99.2%), yes(0.8%)]

16 Discancer Disseminated cancer [n0(99.8%), yes(0.2%)]

17 Dialysis Currently on dialysis (pre-op) [n0(99.7%), yes(0.3%)]

18 Transfus Transfusion >= 1 units PRBCs in 72 hours before surgery  [n0(99.8%), yes(0.2%)]

19 Wtloss 10% loss body weight in last 6 months [n0(99.8%), yes(0.2%)]

20 Ascites Ascites [n0(99.98%), yes(0.02%)]

21 Ethnicity Ethnicity [n(83.1%), u(12.5%), y(4.3%)]

22 Returnor (la- Return to OR Status (Yes/No) [n0(98.6%), yes(1.4%)]

bel)
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