
Received 29 January 2025, accepted 19 March 2025, date of publication 27 March 2025, date of current version 8 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3555543

State-of-the-Art in Responsible, Explainable, and
Fair AI for Medical Image Analysis
SOHEYLA AMIRIAN 1, FENGYI GAO 2,
NICKOLAS LITTLEFIELD 3,4, (Graduate Student Member, IEEE),
JONATHAN H. HILL1, ADOLPH J. YATES JR. 5, JOHANNES F. PLATE5,
LIRON PANTANOWITZ4,6, HOOMAN H. RASHIDI4,6,
AND AHMAD P. TAFTI 2,3,4,6
1Seidenberg School of Computer Science and Information Systems, Pace University, New York, NY 10038, USA
2Department of Health Information Management, University of Pittsburgh, Pittsburgh, PA 15260, USA
3Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA 15260, USA
4Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
5Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
6Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA

Corresponding authors: Soheyla Amirian (samirian@pace.edu) and Ahmad P. Tafti (tafti.ahmad@pitt.edu)

ABSTRACT Integrating responsible, explainable, and fair artificial intelligence (REF-AI) into medical
image analysis has gained significant attention in recent years. This has been driven by the pressing
need for ethical, trustworthy, and transparent implementation of AI systems in healthcare. The following
review provides a concise overview of REF-AI in the context of medical image analysis. It begins with
the fundamental concepts of AI responsibility, explainability, and fairness, followed by a comprehensive
taxonomy of over 35 key algorithms and strategies. In addition, it compares methodologies, strengths, and
limitations, such as the alignment of AI models with medical standards and the development of interpretable
and actionable results for clinicians. Finally, it highlights current trends and proposes directions for future
research to further advance the responsible, explainable, and fair application of AI in medical imaging.

INDEX TERMS Artificial intelligence (AI), responsible AI, explainable AI, fair AI, AI evaluation metrics,
medical imaging.

I. INTRODUCTION
Integrating artificial intelligence (AI) into healthcare, partic-
ularly in medical image analysis, has made transformative
advances in diagnosis, prognosis, treatment planning, and
patient care. As these advanced technologies continue to
evolve, there is a pressing need for AI systems that are
effective, ethical, transparent, trustworthy, and equitable.
Responsible, explainable, and fair AI (REF-AI) has emerged
as a critical focus in ensuring that AI applications in
medical imaging meet these standards. REF-AI emphasizes
the importance of aligning AI models with well-established
medical standards, making their outputs interpretable and
actionable for healthcare professionals, and ensuring fairness
in their application across diverse patient populations and
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healthcare settings. This review explores the foundational
principles of REF-AI in medical image analysis, providing a
comprehensive overview of the key algorithms and method-
ologies that drive this field. This review aims to advance
the responsible, explainable, and equitable application of
AI in medical imaging by critically assessing the strengths,
limitations, and challenges of existing approaches while
proposing directions for future research. To the best of our
knowledge, our research is the first to focus specifically
on REF-AI within the domain of medical image analysis.
Wewill begin by defining REF-AI and exploring its empirical
foundations.

A. RESPONSIBLE AI IN MEDICAL IMAGE ANALYSIS
Responsible AI refers to building, implementing, and utiliz-
ing AI systems in an ethical, sustainable, and trustworthy
manner. This focuses on respecting human values, promoting
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fairness, and ensuring transparency and accountability while
considering societal impacts [1], [2], [3], [4]. Responsible
AI in healthcare encompasses the broader ethical and social
responsibilities of developing and deploying AI-powered
systems across the healthcare ecosystem. This empowers
individuals to comprehend, control, and take responsibility
for AI-driven mechanisms [1], [5], [6]. Responsible AI in
medical imaging ensures that AI tools are implemented and
used in ways that align with medical ethics, fairness and
equity, regulations, patient privacy, and safety standards [7],
[8], [9], [10]. This includes comprehensive and even rigorous
testing, validation, and continuous monitoring of AI systems
to guarantee that they perform precisely, logically, and safely
in real-world clinical settings.

B. EXPLAINABLE AI IN MEDICAL IMAGE ANALYSIS
AI explainability in healthcare refers to AI models’ capa-
bility to provide clear and understandable explanations of
their decisions and predictions to their end-users, such as
clinicians, surgeons, and patients [11], [12], [13], [14]. In AI-
powered image analysis [15], [16], [17], [18], and particularly
for medical image analysis, explainable AI is critical because
healthcare professionals must trust and understand the
AI-powered imaging toolsets before they utilize them for
patient care and clinical practices. This could bridge the
gap between complex AI models, domain experts, clinicians,
patients, and decision-makers by providing insights into how
and why a particular diagnosis or prediction was made using
the AI models [14], [19], [20], [21], [22].

C. FAIR AI IN MEDICAL IMAGE ANALYSIS
AI fairness involves addressing biases in data, data acqui-
sition (e.g., imaging machinery), algorithms, and outcomes
to prevent discrimination [23], [24], [25]. In medical image
analysis, this involves training and validating AI models on
diverse datasets that reflect various demographics, such as
sex, race, and ethnicity, alongside social determinants of
health (SDOH), such as income and social protection, educa-
tion, availability of healthcare services, health insurance, and
quality of care [26], [27]. This method helps reduce the risk
of biased predictions that might unequally impact specific
patient groups. Fairness in medical imaging is essential to
verify that AI tools provide equal benefits to all patients,
regardless of their race, sex, age, economic status, or other
factors [28], [29], [30], [31].
These three principles of responsibility, explainability, and

fairness confirm that AI systems in medical imaging are
technically and computationally effective, ethically sound,
and well-equipped with a list of qualitative and quan-
titative attributes. These attributes include accountability,
lawfulness, traceability, reliability, equity, governability,
scalability, availability, explainability, truthfulness, privacy-
preserving, and safety (Figure 1). These are essential
to gain acceptance among healthcare professionals and

FIGURE 1. Principles for REF-AI in medical imaging include
accountability, privacy-preserving, lawfulness, traceability, reliability,
equity, governability, scalability, availability, explainability, truthfulness,
and safety.

patients and seamlessly integrate AI into various clinical
workflows.

D. EMPIRICAL FOUNDATIONS
The empirical foundation of responsible, explainable, and
fair AI (REF-AI) in medical image analysis lies in creating
AI models and mechanisms that are reliable, understandable,
and fair in various healthcare settings and patient popu-
lations. With that, responsible AI emphasizes safety and
ethical alignment by evaluating AI tools against real-world
clinical standards to ensure accuracy and reliability. Regular
monitoring confirms that AI outputs remain dependable as
new patient data or clinical scenarios emerge. Meanwhile,
explainable AI makes AI decisions understandable and
accessible to healthcare providers and patients, enabling them
to comprehend how specific features led to a particular
result. This transparency confidently supports clinicians in
integrating AI insights into their decision-making. Fair AI,
on the other hand, ensures that these systems perform
equitably for all patients. Fairness reduces the risk of bias
by training AI on diverse datasets representing different
ages, ethnicities, and health conditions. It brings consistent
performance in all groups, promoting equitable patient care.

Specific metrics and measurements should be used to
evaluate each component to assess the effectiveness of REF
AI in medical imaging. For AI responsibility, metrics, such
as accuracy, sensitivity, and specificity, determine if an AI
model delivers reliable, accurate, and clinically relevant
output. These metrics ensure that AI predictions align with
accepted medical standards and provide consistent support
in diverse clinical scenarios. Regarding AI explainability,
some computational strategies, such as saliency maps [32],
[33] and Grad-CAM [34], [35], help clinicians visualize the
AI’s decision-making process by highlighting the specific
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areas of a medical image that contributed to a diagnosis.
It offers better transparency and allows healthcare providers
to interpret AI recommendations relatively easily and quickly.
Evaluation tools, such as the Pointing Game [36], [37]
or Area Over Perturbation Curve (AOPC) [38], measure
how well these visual explanations align with medical
insights. The fairness of AI could also be evaluated using
fairness-adjusted metrics. For example, using skew equalized
odds metric [39], we can compare AI performance across
different demographic groups to ensure equitable treatment
recommendations. Additionally, skew error ratio (SER) [28]
can measure the discrepancy in error rates between different
demographic groups, such as age, gender, or ethnicity,
helping to identify potential biases in the AI model’s
performance. Moreover, metrics like demographic parity and
subgroup accuracy help identify potential bias, ensuring that
the AI models serve all patient populations effectively and
without discrimination.

E. REF-AI APPLICATIONS IN MEDICAL IMAGING
By making AI technologies accurate, efficient, and in
line with clinical requirements and regulatory frameworks,
REF-AI is now transforming medical imaging into more
reliable, more intelligent, and more responsible pipelines
in various clinical domains. With reliable predictions,
transparent reasoning, and equitable performance, REF-
AI provides a basis for safe and practical applications in
diagnosis, prognosis, personalized treatment, and imaging,
fundamentally enhancing patient care and clinical outcomes.

This section organizes REF-AI applications for medical
imaging into five categories, as follows:

• Diagnosis, Prognosis, and Treatment: REF-AI sup-
ports accurate and equitable diagnostic tools, partic-
ularly identifying and predicting disease progression.
For instance, REF-AI in diagnostic imaging provides
clinicians with clarity by visually highlighting regions
of interest (RoI) in medical images, such as cancerous
lung nodules, lesions, or abnormal tissue, allowing for
faster and more informed clinical decisions. REF-AI
techniques improve prognostic predictions while esti-
mating disease progression with high accuracy, which
aligns with real-worldmedical standards. It alsomakes it
possible for clinicians and surgeons to choose treatment
paths that reflect patient-specific needs, reducing biases
that could adversely impact diagnosis and prognosis
across diverse patient demographics [19], [31], [40],
[41], [42], [43], [44], [45].

• Personalized Medicine: Personalized care is becoming
a reality with REF-AI, as AI systems harness imag-
ing data combined with other patient characteristics,
including genetics and medical history, to custom
treatment strategies. For example, REF-AI methods
clarify the reasoning behind these suggestions, enabling
clinicians and patients to understand the factors driv-
ing personalized recommendations. These AI-enabled
systems make individualized care models available

and equally beneficial across all demographic groups,
optimizing patient outcomes without compromising
equity in care [44], [45], [46], [47], [48], [49], [50].

• AIAssistiveRadiology:REF-AI significantly improves
radiology by offering AI-based assistance that radiolo-
gists can trust and use intuitively in everyday practice.
These technologically advanced tools highlight critical
areas within radiological images, such as suspicious
masses and bone or prosthesis loosening, enhancing the
radiologist’s ability to make fast and accurate diagnoses.
These AI models are validated against diverse clinical
imaging datasets to produce consistent and high-quality
support, while they are equally accurate and applicable
across various patient populations [42], [50], [51], [52],
[53], [54], [55], [56], [57].

• Medical Image Segmentation and Classification:
REF-AI has made a significant leap towards more
actionable and interpretable outcomes in segmentation
and classification. REF-AI tools are now helping
radiologists and other clinicians understand how AI
models segment, measure, and classify regions, such
as highlighting tumor boundaries in cancer imaging,
which aids in diagnosis and treatment planning. These
computational methods focus on reliable and real-world
testing, aligning the automatic segmentation algorithms
closely with clinical benchmarks and patient-specific
characteristics. By reducing biases and making general-
ized AI models, REF-AI advances image segmentation
and classification accuracy across diverse populations,
eliminating variability in AI model performance that
could otherwise lead to mis-classification or even
inconsistent patient outcomes [28], [42], [43], [44], [51],
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67],
[68].

• Clinical Trials: REF-AI plays an important in clini-
cal research by supporting unbiased patient selection
and reliable outcome prediction, both essential for
generalizable and reproducible results. For instance,
REF-AI mechanisms assess patient data in a way that
reduces demographic or socioeconomic biases, making
trials more inclusive and representative. At the same
time, these AI-powered methods offer transparency into
AI-driven insights built from imaging data, helping
researchers interpret these insights and strengthen the
credibility of trial outcomes. This application reduces
trial dropout rates and enables more precise tracking
of intervention effects, advancing research quality and
paving the way for broader application in clinical
practice [23], [24], [69], [70], [71], [72], [73], [74].

Our key contributions are summarized as follows.
• Comprehensive Overview of REF-AI in Medical
Imaging: This work provides an in-depth review of
the foundational principles of Responsible, Explainable,
and Fair AI (REF-AI) in medical image analysis.

• Analysis of Key Algorithms and Methodologies: We
examine the core computational techniques that advance
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REF-AI applications in medical imaging, highlighting
their strength and limitations.

• Advancing Ethical AI Implementation in Health-
care: We highlight the significance of ethical AI
practices in healthcare, advocating for responsibility,
accountability, transparency, and fairness in AI applica-
tions.

• Comprehensive Taxonomy of REF-AI Algorithms:
We introduce a detailed taxonomy encompassing over
35 key algorithms and strategies, categorizing them
based on their role in building responsibility, explain-
ability, and fairness in AI-driven medical imaging. See
Figure 2.

• Future Research Directions: We propose pathways
for enhancing REF-AI, including novel frameworks,
interdisciplinary collaborations, and policy recommen-
dations.

II. REF-AI CHARACTERISTICS
This section further explains the underlying components
of REF-AI in medical imaging. This section will offer
a comprehensive explanation of the REF-AI principles
depicted in Figure 1.

A. ACCOUNTABILITY
Accountability in REF-AI refers to AI systems that can
be audited to meet specific standards, with clearly defined
responsibilities and consequences if the systems fail to
comply. It also discusses that AI developers, organizations,
and policymakers are legally and ethically responsible for
the decisions made by AI systems, requiring them to follow
laws and standards to ensure AI-powered systems function
correctly [75], [76], [77]. The establishment of REF-AI
systems should hold developers and organizations account-
able for errors or issues, with accountability mandated at
every level from requirement analysis and development
to implementation and deployment [78]. There is also a
pressing need to organize a solid data governance framework
with regular data audits to assess data records’ quantity,
quality, and suitability, equipping such a framework with
data provenance, data traceability, and a comprehensive data
dictionary and documentation [79]. One way to achieve
accountability in AI systems for medical imaging is by
ensuring AI decisions are transparent and explainable to
end-users (e.g., physicians, radiologists, and clinicians). This
allows them to review, investigate, and validate the AI’s
conclusions before conveying information to patients. This
collaborative process adds an important layer of human
oversight, confirming that AI tool sets are used responsibly,
and they can deliver accurate and trustworthy medical
guidance [80], [81].

B. PRIVACY-PRESERVING
Privacy-preserving AI in REF-AI refers to developing
and deploying AI systems that safeguard sensitive patient

information while maintaining the system’s ability to deliver
reliable, trustworthy, accurate, and actionable insights. Given
the highly confidential nature of healthcare data, including
medical images combined with clinical notes or radiology
reports, ensuring privacy preservation is essential for com-
pliance with legal and ethical standards, such as the Health
Insurance Portability and Accountability Act (HIPAA) and
the General Data Protection Regulation (GDPR). Beyond
regulatory compliance, privacy-preserving AI builds trust
among stakeholders, including patients, surgeons, clinicians,
and healthcare organizations, sharing data with AI algorithms
in a way that cannot be traced back to individuals. This trust is
fundamental to the successful and widespread integration of
AI technologies in medical imaging informatics and health-
care [82], [83], [84]. Practical methods of privacy-preserving
AI are rapidly growing in medical imaging. For example,
federated learning and homomorphic encryption have been
utilized for training AI models across multiple institutions,
allowing collaboration while securing patient data [85], [86],
[87], [88], [89].

The federated learning approach allows AI models to be
trained on distributed data sources without transferring data
via a central server. This allows sensitive patient data to
remain within the institution that owns it [85] and [86].
Additionally, with computational methods such as encrypted
data processing using homomorphic encryption, we can
make computations directly on encrypted data, safeguarding
privacy throughout the AI pipeline [87], [88]. Research using
AI and associated databases will exponentially increase; safe-
guards regarding compliance with national and international
rules and regulations regarding human research need to be
maintained.

C. LAWFULNESS
Lawfulness in AI refers to aligning AI systems with
established legal and regulatory frameworks, guaranteeing
adherence to norms and standards that protect patients
and uphold ethical principles. In medical imaging, where
AI systems analyze sensitive patient data and assist in
clinical decision-making, lawfulness becomes paramount.
Compliance with regulations, such as the GDPR in the Euro-
pean Union [90], emphasizes that AI must manage health
data records responsibly. The GDPR sets comprehensive
rules on data privacy and prohibits automated decisions
without human involvement unless exceptions apply, such as
explicit patient consent or justified public interest [91], [92].
By preserving patient rights and promoting confidence in
AI-assisted healthcare, these legal protections aim to ensure
AI-powered medical imaging methods function within an
ethical and legal framework.

Furthermore, for AI to be legal, accountability and
transparency must be precisely maintained for the decisions
these systems make. In medical imaging, for example, they
must produce outputs that are understandable to medical
practitioners, allowing for significant human oversight of the
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AI-enabled decision-making process. When medical profes-
sionals can verifyAI-driven conclusions, the system’s outputs
become more credible, allowing for REF-AI integration
into diagnostic, prognostic, and therapeutic processes [92],
[93]. Moreover, lawful AI systems must account for justice
and nondiscrimination to prevent disparities, particularly in
diverse healthcare settings and patient populations. Such a
commitment to fairness and nondiscrimination is central to
lawful AI, as a biased AI algorithm in medical imaging
may lead to inconsistent image segmentation, diagnoses, and
treatments [28]. Together, these characteristics of lawfulness
in AI uphold both the ethical and legal standards essential to
patient care, public trust, and positive societal impact [92],
[93], [94], [95].

D. TRACEABILITY
Building REF-AI systems, especially in the high-stakes
healthcare industry, requires traceability. Traceability in AI
involves maintaining a comprehensive record of each phase
in the system’s life cycle, starting from functional and
nonfunctional requirement analysis, system specification,
and data collection to AI model development, validation, and
deployment [96]. Traceability is an essential safety measure
in AI-powered medical imaging, particularly where AI aims
at sensitive diagnostic and treatment strategies. It guarantees
that anymistakes or discrepancies can be traced to a particular
phase of the system’s life cycle or an incorrect decision within
the AI pipeline, thus promoting adherence to patient safety,
clinical standards, and healthcare regulations [97].
To achieve traceability in REF-AI in healthcare, AI sys-

tems should be equipped with comprehensive documentation
and version control at each stage of development. This
includes maintaining detailed records of data sources, core
functionalities of the system, training procedures, AI model
parameters, and validation strategies [5], [97], [98]. In med-
ical imaging analysis, traceability is particularly critical
due to the complex nature of interpreting medical images
and the potentially severe consequences of misdiagnosis
or misclassification. By tracking each step, from data
selection to automatic image analysis and diagnostic outputs,
traceability allows clinicians and regulators to identify the
source of errors and any biases in AI recommendations,
facilitating accountability and ethical practice in patient
care [5], [97], [98], [99], [100].

E. RELIABILITY
Reliability in REF-AI systems in healthcare means con-
sistently performing as expected across diverse healthcare
settings and scenarios, managing uncertainties and errors, and
preventing breakdowns or performance issues to maintain
core functionalities [101], [102]. In the context of AI,
it demonstrates that a system can repeatedly provide accurate
and stable outputs, even when faced with unexpected
conditions. This is particularly important in medical image
analysis, where AI tool sets assist with diagnostics, treatment

planning, and patient monitoring, and where unreliable
outcomes could pose significant clinical risks [96], [103],
[104], [105].

F. EQUITY
Equity in REF-AI, particularly in healthcare, addresses fair
access, representation, and outcomes across diverse popula-
tions. Equity in AI involves actively mitigating biases that
arise from unequal data representation or algorithmic bias.
Implementing AI with a foundation of equity is a key com-
ponent in REF-AI, where studies emphasize that AI systems
developed without sufficient regulatory oversight can inad-
vertently propagate health inequities, negatively affecting
marginalized and historically underrepresented groups [106].
In medical imaging, equity is significant as AI-powered
models have been used successfully for diagnostics and
predictive analysis. Equity-focused AI policies and strategies
advocate for regulatory mechanisms requiring diverse data
sources and imaging machinery in AI model training. These
standards mitigate biases, demonstrating that AI technologies
can actively address healthcare disparities [2], [8], [28], [79],
[103], [107], [108].
REF-AI offers the potential to advance equity in AI for

medical imaging by proposing methods for bias detection
and mitigation at every development phase starting from data
collection, to AI model development, evaluation, deploy-
ment, and interpretation. This includes utilizing federated
learning or cyclic weight transfer approaches, allowing
institutions to share model knowledge without transferring
personal data, thus supporting fair representation while
maintaining privacy [107], [109], [110]. By building a
regulatory environment prioritizing fairness, REF-AI can act
as a revolutionary force in healthcare. This is particularly
true in applications such as medical imaging, where accurate,
reliable, and de-biased decision-making is important for
patient outcomes across all populations within different
healthcare systems.

G. GOVERNABILITY
Governability in AI is critical to maintaining accountability,
upholding ethical standards, and building trust within health-
care systems. The rapid integration of AI in healthcare and
medical imaging analysis begs a robust governance model
that addresses ethical and practical challenges [111], [112].
Without clear regulations, AI systems may result in biases
that compromise patient privacy and/or diminish clinical con-
fidence. A well-structured and well-organized governance
framework is thus needed to build AI applications operating
under strict healthcare standards and regulations while being
adaptable to emerging challenges. In medical imaging, where
accuracy is paramount, governability directly impacts AI-
powered diagnostics’ reliability, availability, and fairness
(e.g., cancerous lung nodules, and bone lucency). Effective
governance frameworks reduce risks associated with biased
or non-representative images, supporting diagnostic accuracy
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across diverse patient groups. By embedding these practices,
REF-AI inmedical imaging can consistently deliver impartial
and interpretable results, enhancing diagnostic accuracy and
reinforcing trust between patients, clinicians, and healthcare
providers [113]. Moreover, a comprehensive governance
model that includes inputs from all parties, such as clinicians,
AI developers, and patient representatives, helps align AI
applications with ethical healthcare principles. Mechanisms
such as regular audits, performance evaluations across
different demographic groups (e.g., sex, race, age, ethnicity),
and adherence to privacy make a platform to integrate
AI into clinical workflows smoothly. This requires careful
attention, as an overly rigid framework here can slow down
advancements and innovations in AI integration. At the
same time, insufficient oversight may risk patient safety and
perhaps ethical breaches [114], [115], [116], [117].

H. SCALABILITY
Scalability in AI refers to the capacity of AI systems to
efficiently handle growing workloads and user numbers and
maintain consistent performance as they expand. For medical
imaging analysis, scalability is essential due to the growing
volume of imaging data and the computational demands of
advanced AI methods, such as deep convolutional neural
networks (CNNs). The scalability of AI methods now mainly
relies heavily on cloud infrastructure, parallel processing,
and optimized data management. This collectively enables
the high throughput necessary for fast and real-time medical
analysis and diagnostics [118], [119], [120], [121]. Achieving
scalable AI in medical imaging involves the adoption of
advanced deep learning practices, including transfer learning
and federated learning, which allow models to train on
varied datasets without centralized data pooling [122],
[123], [124], [125]. In healthcare, AI scalability presents
challenges as well. For example, the heterogeneity of medical
imaging data requires systems to accommodate different
image resolutions, diverse image qualities, and labeling
conventions. Cloud-based solutions offer flexible resources
and facilitate collaboration across institutions, addressing
the high storage and processing requirements while also
supporting interoperability across healthcare systems [121].

I. AVAILABILITY
REF-AI should come with AI availability, where it mainly
aims to build AI tool sets that are easy to use and
accessible for all types of healthcare providers, regardless
of technology or data system’s level, making them available
for all parties [126], [127], [128], [129]. Different healthcare
providers, ranging from big hospitals to smaller clinics, may
have vastly different computer systems, equipment, and data
types. For AI to be helpful across the board, it must be
designed toworkwell in all these diverse settings. That means
building AI tools that are flexible and can also fit smoothly
into any healthcare setting; thus, even less-resourced or

resource-limited clinics can still benefit from AI-powered
technologies.

AI availability also refers to the fact that AI systems
can operate across different platforms, such as various
operating systems (e.g., Linux, Windows), imaging machines
(e.g., MRI, X-ray), and smart devices. This flexibility is
needed to meet the demands of diverse clinical environments
where technology and equipment can differ significantly.
By making AI accessible across these different devices and
systems, healthcare organizations can provide clinicians with
consistent and reliable AI-powered support in diagnostics,
decision-making, and patient monitoring, regardless of their
specific tools or machines. Furthermore, the 24/7 availability
of AI solutions is crucial in healthcare, as prompt access to
AI-driven insights can have a significant impact on patient
outcomes during emergencies. Finally, the availability of AI
in healthcare is incomplete without addressing AI literacy
and education among healthcare professionals. For AI to
be successfully adopted, healthcare providers and staff need
to understand how to use and benefit from these advanced
technologies effectively. This requires investing in AI literacy
programs to equip clinicians, technicians, and administrative
staff with the knowledge to utilize AI tools confidently.
When healthcare providers across the spectrum are trained
in AI applications and understand the underlying principles,
the sector can move toward a more informed and proactive
approach to adopting and implementing AI innovations.

J. EXPLAINABILITY
Explainability in REF-AI clarifies how AI systems make
decisions, process data and images, and function internally.
By providing transparent explanations of each decision-
making step, REF-AI allows users to see exactly how data is
processed, what factors contribute to AI-powered decisions,
and how results are generated, making AI components more
understandable for the end-users (e.g., clinicians, patients,
physicians) [22], [103], [130], [131], [132], [133], [134].
This focus on transparency enables healthcare providers and
patients to gain insights into the rationale behind AI-powered
decisions and the meaning of these decisions. In this way,
REF-AI explainability bridges the gap between complex AI
systems and end-users and makes more ethical and informed
use of AI, supporting decision-making in high-stakes areas
like medical imaging analysis [22], [135], [136], [137],
[138], [139].

In medical imaging, REF-AI’s explainability feature is
especially valuable for surgeons, radiologists, and patients,
as it helps them understand AI-generated diagnoses or
recommendations. This understanding contributes more to
shared decision-making, allowing medical professionals to
confidently incorporate AI insights while patients feel more
informed about their care. By explaining how the AI arrived
at each conclusion, REF-AI also reduces the risk of errors or
misdiagnosis, while it can alsomake theseAI-enabledmodels
transparent and free from biases [14], [19], [28], [140], [141],
[142], [143], [144], [145].

58234 VOLUME 13, 2025



S. Amirian et al.: State-of-the-Art in REF-AI for Medical Image Analysis

K. TRUTHFULNESS
Truthfulness in REF-AI means the ability of AI systems
to provide accurate, consistent, and fact-based outputs
aligned with medical knowledge and clinical evidence.
Medical imaging helps to build AI-powered medical imaging
algorithms that are correct and free from misleading or
even exaggerated results. Without truthfulness, AI systems
risk disseminating inaccuracies that could lead to diagnostic
errors (e.g., misclassification), ineffective treatments, pro-
longed hospitalization, and reduced patient confidence in
AI-powered healthcare [66], [140], [146], [147]. AI truth-
fulness in medical imaging can be illustrated through
practical examples. For instance, AI systems that detect
cancerous lung nodules from CT images must generate
predictions based on verified diagnostic markers, such as
size, morphology, texture, or masses, while avoiding false
positives caused by image artifacts [148], [149]. Another
example is the use of AI for brain tumor segmentation
and classification, where truthfulness ensures that high-
lighted tumor regions correspond accurately to the pathology
confirmed through biopsy or clinical evaluation [150],
[151], [152].
Implementing truthfulness in AI systems for medical

imaging informatics should include several key elements,
including but not limited to (1) rigorous training and
validation of AI models using diverse and high-quality
datasets to confirm that predictions are based on reliable
data representative of real-world scenarios, (2) adherence to
medical guidelines and standards, such as clinical protocols,
thus it can align AI outputs with currently accepted truths in
healthcare, (3) robust error analysis, validation mechanisms,
and continuous monitoring for AI-enabled methods, (4)
integrating strategies for peer review and clinical oversight to
keep AI systems accountable to healthcare providers [147],
[153], [154], [155], and (5) ensure consensus processes that
allow incorporation of new knowledge (some generated by
widespread use of AI) with consistency across platforms.

L. SAFETY
Safety in REF-AI involves building and implementing AI
systems that are robust, dependable, and free from behaviors
or predictions that could lead to harm. In medical imaging,
where AI supports critical diagnostic and treatment decisions,
safety is of paramount importance [111], [156], [157], [158].
Unsafe AI outputs, such as inaccurate predictions, incorrect
tumor segmentation, or misclassification of disease, could
result in delayed treatments, misdiagnoses, or costly and
unnecessary procedures. We can protect patients and uphold
clinical standards by embedding safety principles into AI
systems, enhancing trust among healthcare providers and
stakeholders. In medical imaging informatics, for example,
AI models for lung nodule detection on CT scans may
employ confidence thresholds to identify and triage cases
requiring additional human review. Additionally, it can

prompt clinicians to cross-reference with other imaging
modalities or clinical data, thus reducing the risk of false
negative classification.

Regarding safety implementation, robust model validation
techniques and testing against diverse and extensive datasets
will help consistent performance across various patient
demographics and imaging scenarios. Moreover, employ-
ing adversarial robustness techniques, such as adversarial
training or quantifying errors in predictions, can protect
AI systems from malicious inputs that could compromise
their accuracy. Continuous monitoring, regular updates,
and retraining of AI models on new data can also help
maintain safety as clinical practices and/or patient data
evolve.

III. REF-AI METHODOLOGIES
This section dissects the methodologies associated with
REF-AI frameworks and approaches. Through our analysis
of these various methodologies, we aim to emphasize
best practices and emerging trends that support effective
AI technologies. This review offers a foundational under-
standing of how these principles can be incorporated into
AI systems, enhancing trust and accountability in their
applications. Figure 2 illustrates the taxonomy of REF-AI
methodologies for medical imaging informatics. Table 1
provides an overview of the key methodologies, strategies,
and techniques categorized under the REF-AI framework.
The table serves as a concise reference for understanding how
REF-AI methodologies contribute to developing equitable,
interpretable, and trustworthy AI systems in medical imaging
informatics.

A. RESPONSIBLE AI
Responsible AI methods encompass various strategies,
including bias detection and mitigation, transparency tools,
data privacy, and ethical frameworks, designed to ensure
that AI systems are developed and deployed, emphasizing
fairness, transparency, and ethical standards, especially in
medical imaging. This section discusses methodologies
designed to ensure AI responsibility.

1) BIAS DETECTION AND MITIGATION
Bias mitigation methods are strategies employed first to
identify and reduce AI system biases. These biases can
arise from data-driven algorithmic and human biases [95],
[159]. Ensuring the diversity among patients, stakeholders,
healthcare workers, and the datasets used to train and
validate machine learning models can help reduce biases
and increase equity in outcomes [160], [161]. A list of
mechanisms exists to cope with bias detection andmitigation.
For instance, causal models and graphs can detect and
address direct discrimination in data, revealing hidden biases
and enabling corrective actions [162]. Generating synthetic
data helps supplement real-world data, particularly when
underrepresented groups lack representation. Resampling
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FIGURE 2. The taxonomy of the responsible, explainable, and fair artificial intelligence (REF-AI) methods for medical image analysis.

techniques, including down-sampling and oversampling, can
address imbalances in the training data [163]. Further-
more, careful handling of missing data, particularly for
marginalized populations, is essential to avoid introducing
further bias, acknowledging that missing data is often
non-random and requires thoughtful treatment [79], [162].
From an algorithm perspective, algorithmic adjustments,
such as IBM’s ‘‘adversarial debiasing’’ technique, can act as
an adversary by predicting sensitive attributes like race or
sex/gender from the data and mitigating their influence on
any predictions [161].

Developing solid guidelines emphasizing data origin and
quality can help organizations select high-quality datasets.
When domain experts and annotators create gold-standard
or ground-truth datasets, understanding their experiences
and measuring inter-rater agreement becomes important
for maintaining data quality and minimizing biases [28],
[79], [162].

2) TRANSPARENCY MECHANISMS
Transparency mechanisms are essential in responsible AI
to enhance the interpretability and accountability of AI
models. Transparency mechanisms will open AI models’
closed-box nature, offering model-agnostic and model-
specific techniques [42]. Such methods could be divided
into ex-ante and post-hoc techniques. While the first one
incorporates interpretability directly into the AI model during
its design and development stage, the latter provides insights
into the AI model’s process after it has been trained [164],
[165]. Ex-ante techniques are proactive and are mainly
built into the AI models from the start. Examples include
AI models that are intrinsically interpretable, for instance,
decision tree models or linear regression models. On the
other side, post-hoc methods are applied after the AI models
have been trained, so they could make AI predictions more
interpretable. These might include visualization methods and
feature importance scores that help end-users understand the
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AI models’ decisions. One option would be to provide the
positive or negative predictive value of a finding.

3) ETHICAL FRAMEWORKS
Ethical frameworks offer comprehensive guidelines that
build fairness and transparency throughout the design,
development, and implementation of AI systems. These
frameworks facilitate identifying ethical issues, including
bias, discrimination, safety, and privacy concerns, enabling
healthcare providers to proactively address such issues [166].
The ethical frameworks for responsible AI in healthcare
take a multidisciplinary approach, integrating fields such as
medical ethics, bioengineering, humanwell-being, regulatory
compliance, and psychology into the AI development pro-
cess. These frameworks highlight the importance of diverse
expertise to not only address but also cope with complex eth-
ical challenges. The responsible design process incorporates
ethical impact analysis at each phase, including research,
ideation, prototyping, and post-launch evaluation, focusing
on psychological well-being and broader ethical issues such
as social justice. For example, the ‘‘Spheres of Technology
Experience’’ framework organizes the ethical impact of
technology across six levels of adoption, interface, task,
behavior, life, and society, allowing developers to evaluate
and address potential ethical issues at every stage of user
interaction and societal influence, making ethical analysis
systematic, completely thorough, and actionable [167].

Ethical frameworks in healthcare emphasize the principles
of measured action and caring in the in-between to support
decision-making that recognizes the interconnectedness of
stakeholders and the complexities of healthcare settings.
‘‘Measured action’’ involves taking small, adaptable steps
in uncertain situations, while ‘‘caring in the in-between’’
focuses on making relationships among stakeholders and
incorporating their concerns. Together, these principles help
ensure the responsible and ethical integration of AI into
healthcare, maximizing healthcare benefits while minimizing
harm and preventing unequal treatment [95], [164], [166],
[168], [169]. Moreover, ethical frameworks promote the
protection of privacy by prioritizing patient consent for the
use of their protected health information (PHI) and data
minimization, as required by several regulations such as
GDPR and HIPAA [95].

4) STAKEHOLDER ENGAGEMENT
Engaging stakeholders is fundamental to the successful
establishment of REF-AI. Effective stakeholder engagement
brings together AI scientists, healthcare providers, policy-
makers, patients, clinicians, health informatics professionals,
IT specialists, and experts such as biomedical ethicists.
This collaboration makes AI systems align well with ethical
and societal standards, building a safe and sustainable AI
ecosystem that benefits all stakeholders, end-users, and
society as a whole [2], [99], [161], [163]. Ongoing collab-
oration among diverse stakeholders, including members of

underrepresented and marginalized groups, can help reduce
biases and associated risks. This approach leads to safer
and trustworthy AI solutions that address the healthcare
community’s and society’s needs [99], [163].

5) REGULAR AUDITS
Regular audits are key components of responsible AI
in medical imaging, playing an important role in main-
taining ethical standards, detecting and mitigating biases,
and evaluating AI system performance against established
benchmarks. These audits promote accountability and drive
continuous improvement by systematically verifying and
validating AI systems for adherence to ethical guidelines,
legal frameworks, regulatory standards (e.g., the EU AI
Act), and the specific requirements of medical imaging
applications [164], [170].

Audits must be integrated throughout the entire AI life
cycle, ranging from analysis of requirements and design
through development, deployment, and routine utilization.
A comprehensive auditing strategy should make the most
use of internal and external evaluations conducted at all
pre-deployment, post-deployment, and post-incident phases
while maintaining audit independence to build an unbiased
assessment [99], [170], [171], [172], [173]. Targeted data
audits are essential for systematically evaluating the quantity,
diversity, quality, availability, and integrity of data within AI
systems. These audits help to first identify and then mitigate
risks, such as data silos, biases, and integration challenges.
By addressing these issues, data audits enhance the fairness,
safety, transparency, and accountability of AI systems in
medical imaging, building trust and equity in healthcare
outcomes [2], [79], [173], [174].

6) ROBUST GOVERNANCE
Robust governance in responsible AI provides a well-
organized, structured, and multi-tiered oversight framework
that integrates risk management, regulatory compliance,
ethical principles, and data governance. By operating across
industry, organizational, and team levels, this governance
structure helps in implementing AI systems that align well
with societal values while advancing accountability, fairness,
and transparency throughout their lifecycle [79], [158], [175],
[176], [177]. This includes formal regulations, such as
legislative acts and binding guidelines, with voluntary ethical
principles to guide the responsible development, deployment,
and maintenance of AI systems in healthcare. This dual
approach not only enables organizations to achieve their
long-term objectives in AI utilization but also safeguards
stakeholder interests in AI-powered systems [111], [158],
[175], [176], [178].
Effective AI governance, however, integrates several

factors, such as risk management, regulatory compliance,
and ethical considerations, into AI-driven decision-making
processes to confirm the alignment of the AI methods
with societal values. Furthermore, governance structures also
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emphasize proactive oversight to keep AI-enabled systems
accountable and adaptable to contemporary standards and
societal expectations [177], [179], [180].

7) DATA PRIVACY
Data privacy is of paramount importance in the development
of responsible AI systems. In responsible AI, data privacy
includes establishing data governance structures that enforce
data lineage, accountability, and adherence to privacy reg-
ulations, including HIPAA [181] and GDPR [182]. These
frameworks incorporate metadata management through data
catalogs and curation, enhancing transparency, integrity, and
traceability. Such measures provide compliance with laws
and help identify biases, validate data accuracy, andminimize
risks associated with data integration, ultimately promoting
fairness, accountability, and transparency across AI systems
within the healthcare community [79], [183].
Advanced privacy-preserving techniques strengthen AI-

powered systems by balancing security, privacy, availability,
and efficiency. Federated learning, for instance, enables
encrypted model parameters to be shared instead of raw data,
maintaining user privacy by keeping data localized [109],
[184]. Complementary approaches, such as secure multi-
party computation, differential privacy, and trusted exe-
cution environments, could provide additional layers of
protection [185], [186], [187]. These techniques facilitate
computation on encrypted data instead of real raw and
original data, ensuring compliance with privacy regulations
(e.g., GDPR) without compromising the accuracy or utility
of AI models [184], [188]. Moreover, robust data privacy
practices must include informed consent protocols cus-
tomized to diverse populations. Developing transparent and
comprehensive consent is required to have individuals clearly
understand how their data will be used, thus empowering
them to make informed decisions for their data and how the
data will be shared [189], [190].

8) USER-CENTRIC DESIGN
User-centric design in responsible AI emphasizes creating
AI-powered technologies that prioritize user needs and
enhance their overall experience with AI-enabled systems.
This approach covers AI fairness, transparency, and eth-
ical use while promoting accessibility and inclusivity for
all individuals. By incorporating diverse societal values
and adhering to universal design principles, user-centric
design facilitates the development of AI systems that align
with ethical standards and societal expectations [191],
[192], [193]. In healthcare, a key aspect of user-centric
design involves understanding and addressing clinicians’ and
patients’ needs, preferences, and experiences through a focus
on the interaction between all end-users and AI-enabled
systems. This requires gathering user input, usability anal-
ysis, and evaluating systems from subjective perspectives.
Different factors, such as AI transparency, fairness, privacy,
and explainability, are central to this process. This helps to

build and implement AI systems that not only meet technical
requirements but also resonate with user expectations and
values [191], [193], [194], [195]. Beyond software and
system engineering disciplines, user-centric design incorpo-
rates insights from cognitive sciences, psychology, and the
humanities to design and develop AI-powered systems that
enhance human well-being and align with societal values.
This multidisciplinary approach helps to incorporate fairness,
transparency, and ethical use while addressing the broader
impacts of AI technologies [192].

Moreover, accessibility is another critical pillar of user-
centric design. It mainly aims to build AI-enabled systems
that accommodate all users, regardless of their age, race,
gender, abilities, or characteristics. Adhering to univer-
sal design principles may guarantee that AI systems are
equitable, inclusive, and accessible to a broad range of end-
users. By actively involving diverse cohorts, such as the
aging population and individuals with disabilities in the
development process, we will be able to implement AI
strategies that uphold societal values, promote fairness, and
support human dignity [193], [196], [197], [198], [199].

9) CONTINUOUS MONITORING
Continuous monitoring of responsible AI entails the ongoing
validation and real-time observation of the functionalities
and utilization of AI-enabled systems after deployment.
This process maintains adherence to regulations, laws, and
ethical standards while providing channels for a diverse range
of stakeholders to provide feedback and report issues and
comments [200], [201], [202], [203]. An important factor for
the effectiveness of continuous monitoring is the engagement
of a diverse user population, inclusive of different ages, races,
genders, abilities, and ethnicities [162].

10) TRAINING AND EDUCATION
Training and education in responsible AI, delivered through
courses, conferences, and multidisciplinary programs, pro-
vide continuous learning opportunities tailored to diverse
audiences. These initiatives equip healthcare professionals,
managers, and developers with essential knowledge of
AI itself, AI ethics, regulation, clinical applications, and
practical tools, thereby advancing trust, safety, and effective
implementation of AI in healthcare settings [2], [8], [160],
[204], [205]. In addition, training and education methods
can improve responsible AI by equipping end-users, such
as managers, developers, clinicians, and employees, with
a strong understanding of AI ethics through structured
programs, including but not limited to IEEE’s initiative for
ethical AI [204], [206], [207].

B. EXPLAINABLE AI
As discussed earlier, explainable AI in healthcare helps to
open the closed-box nature of AI algorithms and makes
it understandable for end-users, including clinicians, physi-
cians, nurses, and patients. Generally speaking, explainable
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AI methods could be categorized into (1) Attribution-based
and (2) Non-attribution-based methods due to their distinct
strategy in interpreting the decision-making processes of
AI models (Figure 2). Attribution-based methods focus on
quantifying the importance of individual input features, such
as specific regions of interest, edges, and/or blobs in amedical
image, and provide visual or non-visual representations to
highlight these contributions. In contrast, non-attribution-
based methods seek to uncover the broader mechanisms and
reasoning behind an AI model’s predictions or classification,
focusing on the overall AI model behavior or high-level
summaries that extend beyond individual features [40],
[141], [208]. The current section introduces a taxonomy of
explainable AI in medical imaging informatics.

1) ATTRIBUTION-BASED METHODS
The attribution-based methods in explainable AI are tech-
niques used to enhance the interpretability of AI. The goal
of these methods is to determine each feature’s contribution
to the target output/outcome. Attribution-based methods
identify and highlight key features or regions within the
input data, providing clearer insights into how the AI model
arrives at their decisions [14], [141], [208], [209], [210].
These methods could then be classified into (1) visual
attribution-based methods and (2) non-visual attribution-
based methods. While the visual attribution-based methods
aim to highlight the regions of the medical image that are
contributing significantly to the AI model’s prediction, the
non-visual attribution-based methods mainly focus on iden-
tifying which features or internal model components (e.g.,
artificial neural network activations) are most responsible for
an AI model’s decision, without directly highlighting specific
regions in the image.

a: VISUAL ATTRIBUTION-BASED METHODS
Class Activation Mapping: Class activation mapping (CAM)
[211] is a widely used visualization technique that interprets
deep CNNs by highlighting the image regions that are
most important for making a specific class prediction.
This makes it particularly effective for studies involving
medical images [42], [212], [213], [214]. CAM employs
global average pooling (GAP) after the final convolutional
layers and before the fully connected layer, computing the
class activation map by combining the weights of each
convolutional filter with the activations at each spatial
location. It highlights the regions most influential in the AI
model’s decision-making process, thereby visualizing which
region of interest in the image is relevant for the AI model’s
prediction [42], [60]. CAM has been applied in various
fields of medical imaging, including cancer identification
and tumor classification, by visualizing salient regions in
images of the bladder, brain, breast, skin, cardiovascular,
chest, gastrointestinal, and thyroid scans [42], [60], [212],
[215], [216], [217], [218], [219], [220], [221], [222], [223],
[224], [225].

Gradient-Weighted Class Activation Mapping: Gradient-
weighted class activation mapping (Grad-CAM) [34], [35] is
a local explanation technique that addresses the limitations of
CAM. It assigns importance scores to each artificial neuron
by computing gradients flowing into the last convolutional
layer, generating a coarse localization map, and highlighting
key pixels for class prediction. Grad-CAM calculates artifi-
cial neuron importance scores by averaging gradients over
the size of the activation map, then combines these weights
with forward activation maps to produce a heatmap that
highlights areas of the image most relevant for downstream
tasks, such as segmentation or classification [41], [42],
[52], [58], [61], [63], [226], [227], [228], [229]. Grad-
CAM has diverse applications in medical imaging, such
as visualizing regions significant for brain tumor detection,
classifying polyps in whole slide images (WSI), identifying
glaucoma inOCT scans, or pinpointing decision-critical areas
in COVID-19 detection from chest radiographs [42], [60],
[230], [231], [232], [233]. It also enhances visualization for
polyp and tumor detection in endoscopic images and aids in
gastric cancer classification by highlighting regions essen-
tial for diagnostic accuracy [58], [61], [62]. Grad-CAM’s
utilization extends to breast cancer imaging across different
image modalities, such as ultrasound and mammography,
where it effectively highlights lesion regions and assists
clinicians in understanding any focusing areas [60], [63],
[234], [235].
Moreover, Grad-CAM has proven highly effective in

various medical imaging applications, enhancing AI model
interpretability and diagnosis. It provides accurate heat maps
for brain hemorrhage detection, aiding rapid diagnosis of
hemorrhage locations [41]. In pneumonia detection, Grad-
CAM improves the interpretability of X-ray images by
focusing on relevant lung regions, even with background
removal [227]. It is also valuable in lung CT imaging for
localizing cancerous areas [43] and in brain tumor grading,
where it highlights critical features like necrosis [53], [54].
Grad-CAM has been successfully adapted for tumor seg-
mentation in MRI scans, including prostate cancer, offering
performance like manual segmentation [228]. Additionally,
it enhances radiograph and MRI interpretation in tasks
like osteoarthritis diagnosis and tumor segmentation by
emphasizing diagnostically relevant features [52].
Saliency Maps: Another mechanism under the category of

visual attribution-based methods called saliency maps [236],
[237]. Saliency maps are a gradient-based visualization
technique that computes the impact of individual pixels on
a neural network’s classification. They do this by evaluating
the gradients of the loss function concerning the input image,
revealing which pixels most influence the final decision, and
highlighting the relevance of different image areas for a given
class [226]. This method highlights critical areas in medical
images, helping researchers and clinicians understand where
deep learning models focus and aiding in identifying and
diagnosing potential issues or biases. Furthermore, saliency
maps are used to explore how demographic factors, such
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as race and sex, affect a deep learning model’s predictions
of brain regions associated with sex-linked neuropsychiatric
conditions. By adding Gaussian noise and averaging the
maps over multiple iterations, researchers improved clarity
and identified key brain regions associated with different
demographic subgroups [238].
Layer-Wise Relevance Propagation: Layer-wise relevance

propagation (LRP) [239] is an interpretability method that
explains the predictions of neural networks by redistributing
the network’s output back through the layers to assign
relevance scores to individual input features, such as pixels
in an image [42], [52], [226], [239], [240], [241]. Using
local redistribution rules, LRP traces how much each
artificial neuron contributes to the final output, producing
a relevance map that highlights important regions of the
input [42], [226], [242]. LRP has been widely used in medical
imaging to identify key features for diagnosis. Examples
include distinguishing schizophrenia patients using fMRI,
creating heatmaps for tumor detection, diagnosing multi-
ple sclerosis, and generating relevance maps for neonatal
MRI and Alzheimer’s disease detection [42], [241], [242].
Furthermore, LRP is also used to diagnose anterior disc
displacement, osteoarthritis, and temporomandibular joint
disorder from MRI images, generating heatmaps that serve
as visualized rationales for diagnostic predictions [52], [240].
Those studies provide clinicians with interpretable insights
and make artificial neural network models more transparent
and interpretable for medical diagnosis.
Guided Back-Propagation: Guided back-propagation

(GBP) [243] is a visualization and explainability technique
that analyzes the gradient concerning the input image to
highlight those features that are most influential to artificial
neuron activation [53], [242]. It changes the backpropagation
process by setting gradients to zero for units with zero or
negative values after ReLU activation. It highlights features
that increase activation and gives a clearer visualization
than standard back-propagation [53], [226], [242]. This
approach combines ReLU and deconvolution, introducing
a guidance signal to prevent the backward flow of negative
gradients. It makes it effective for visualizing artificial
neural network activations in both the intermediate and final
layers [226]. In medical imaging, GBP enables improved
visualization and interpretation of diseases using neural
networks. It aids in the automated quantification of enlarged
perivascular spaces as markers of cerebral small vessel
disease in brain MRI. For fMRI, it decodes task states of
the human brain without feature engineering. GBP enhances
the detection and visualization of bioresorbable scaffolds
for coronary heart disease in intravascular optical coherence
tomography (IVOCT). In colorectal imagery, it improves
the semantic segmentation of polyps for cancer prevention
with uncertainty estimation. For spinal MRI, it facilitates the
grading and localization of pathologies like disc degeneration
and stenosis with radiological evidence visualization [244],
[245], [246], [247], [248], [249].

SmoothGrad: SmoothGrad [250] is an enhancement of
gradient-based saliency maps that reduces noise by adding
Gaussian noise to the input image and averaging the
resulting sensitivity maps [42], [250], [251]. It improves
the clarity of the saliency map by smoothing gradients,
which reveals the effect of small changes in each pixel on
the classification score. By applying a Gaussian kernel to
average multiple perturbed images, SmoothGrad refines the
saliency visualization and could be combined with other
gradient-based methods for better results [42]. In medical
imaging, SmoothGrad was applied to breast MRI data
to enhance the clarity of feature visualizations generated
by the deep CNNs, helping to distinguish relevant spatial
and dynamic features from pre-processing artifacts during
estrogen receptor status classification [251].
Occlusion Sensitivity: Occlusion sensitivity [236] is an

agnostic method that generates saliency maps by system-
atically occluding parts of the input image and observing
changes in the classification score to identify the importance
of image regions in a model’s decision [212], [236], [252],
[253]. In medical image analysis, this technique generates
heatmaps highlighting areas that significantly influence the
model’s decision, as demonstrated in lesion segmentation
tasks. The method typically results in ‘‘hotter’’ explanation
maps than GradCAM, suggesting more areas are considered
highly relevant for segmenting masses [253], [254].
Integrated Gradients: Integrated gradients (IG) [255] is a

gradient-basedmethod used to interpret deep learningmodels
by evaluating the contribution of each input feature to the
model’s prediction. It requires a baseline input, which could
be a black/white or a random image, and calculates how the
input image’s features differ from the baseline to generate
an explanatory heatmap [42], [240], [256]. IG satisfies the
axioms of sensitivity and implementation invariance, making
it a powerful tool for understanding feature importance and
data skew [42], [255]. IG has been used in medical imaging
to generate heatmaps for predicting diabetic retinopathy
severity, providing pixel-level insights into feature contri-
butions [257]. It has also visualized features in a deep
CNN trained to classify estrogen receptor status from breast
MRI [251] and helped create explainable heatmaps for
diagnosing temporomandibular joint disc displacement using
MRI images, supporting clinical decision-making [240].
Deep Learning Important Features: Deep learning impor-

tant features (DeepLift) [258] is a back-propagation-based
method that calculates contribution scores, such as LRP and
IG, by comparing changes in artificial neuron activations
between an input and a reference. By propagating these
differences through the network, DeepLift quantifies how
every feature contributes to the final prediction [42], [226].
It addresses issues with gradient-based methods, such as
gradient zeroing and discontinuities, allowing for a more
reliable interpretation of model decisions [42]. AI-powered
Medical image analysis uses DeepLift to identify the salient
features for Multiple Sclerosis classification, due to its
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quantitative evaluation performance among other visually
explainable AI methods [226], [259], [260].
Deconvolutional Networks: Deconvolutional networks

(DeconvNets) [236] is an explainability technique used
to visualize activations in CNNs by mapping pixel-level
learning back to the input layer. This method constructs
a deconvolution network by adding transposed convolution
and unpooling layers to reverse the effects of convolution
and max pooling layers in the original model. Deconvnets
can effectively visualize activations for convolution and max
pooling layers by generating visualizations that map learned
features back to the input pixels [43].

b: NON-VISUAL ATTRIBUTION-BASED METHODS
Local Interpretable Model-Agnostic Explanation: Local
interpretable model-agnostic explanation (LIME) [261] per-
turbs the original images, feeds them into the closed-box
model, and examines the resulting outputs. It then assigns
weights to these perturbed images based on their proximity to
the original images [42], [55], [212], [229], [261]. It then fits
a surrogate computational model, such as linear regression,
to the weighted dataset of perturbed points, explaining the
original image’s prediction. LIME is applied to brain MRI
data to reveal visual evidence supporting Alzheimer’s disease
classification using deep CNNs, and provides interpretable
insights for medical professionals by pinpointing key brain
regions that influence predictions [64], [262].
LIME generates heat maps and super-pixels to highlight

key features influencing classification decisions for COVID-
19 and pneumonia in CT and X-ray images, enhancing AI
model explainability and aiding clinicians in understanding
the decision-making process [263], [264]. It was also used to
interpret deep learning predictions for retinoblastoma, iden-
tifying important regions in fundus images, improving trans-
parency and detection accuracy [55]. Additionally, LIME
provided plausible explanations for an endoscopic dataset
including Lymphangiectasia and Pylorus using endoscopic
images [229], and interpreted MRI patches for glioblastoma
multiforme detection [265]. LIME has also improved the
explainability of cancer detection models, such as those for
colorectal cancer and osteosarcoma, by balancing accuracy
with interpretability using histopathological images [266].
It further offers valuable visual explanations for CNNmodels
in digital tomosynthesis images of breast lesion classification,
highlighting influential regions [63].
SHapley Additive Explanations: SHapley Additive Expla-

nations (SHAP) [267] is a game-theory strategy [268], [269]
utilized to explain predictions by attributing the contribution
of every input feature to the overall prediction of the AI
model [55], [229], [270]. SHAP ensures local accuracy by
aligning predictions with the expected average for simplified
inputs, missingness by excluding features absent from the
original input, and consistency by increasing the contribution
of simplified inputs and the SHAP value if the model
changes. This guarantees reliable feature attribution in AI

model explanations [42]. In medical imaging, SHAP has
been applied to analyze the output of a 3D regression CNN
for estimating volumetric breast density from MRI images,
identifying key features and highlighting inaccuracies related
to structures like the pectoral muscle and heart, thus
confirming the feasibility of estimating breast density without
segmentation [270]. It was also used to enhance interpretabil-
ity for retinoblastoma images by assigning importance scores
to pixels, identifying key regions such as yellow-white
masses and calcifications, and revealing the absence of
critical features in normal images [55]. Additionally, SHAP
was also employed to explain an AI model for the early
detection of mutations in the Kirsten Rat Sarcoma viral
oncogene homolog (KRAS) and epidermal growth factor
receptor (EGFR) in lung cancer patients using low-dose
computed tomography (LDCT) images [271].
Adversarially-Generated Counterfactuals: Adversarially-

generated counterfactuals (ANCHOR) [272] is a method
that provides stable explanations for model predictions by
using a set of if-then rules to anchor a prediction to identify
crucial features or segments in an image that consistently
lead to a particular prediction. This method ensures that the
variation among the remaining segments does not influence
the prediction. In medical imaging, ANCHOR can generate
a fairly intuitive explanation for a chest X-ray classification
model for identifying COVID-19 patients by providing most
of the left side of the lungs as the explanation for the
prediction [42], [273].

2) NON-ATTRIBUTION-BASED METHODS
Non-attribution-based methods do not directly attribute
importance to specific parts of the image; instead, they aim
to reveal the underlying processes and rationale behind an
AI model’s predictions, offering explanations that go beyond
pixel-level analysis [40], [208].
Counterfactual Explanations: Counterfactual explana-

tions [274] are commonly employed in explainable AI to
provide ‘‘what-if’’ insights, which explore how changes
to the input data would affect the AI model’s prediction.
These explanations involve making minimal alterations to
an image to interpret the AI model’s decision for an
individual instance [42]. In medical imaging, counterfactual
explanations modify or exclude specific regions, such as
pathological areas, to observe how predictions change.
This approach helps identify key areas that influence the
model’s decision while preserving the interpretability of the
model [275].
Testing With Concept Activation Vectors: Testing with

concept activation vectors(TCAV) [276] is a non-visual
global method in explainable AI that quantifies how high-
level concepts, such as specific features like a tumor in a
medical image, influence an AI model’s predictions or deci-
sions [42], [60], [277]. Several studies have applied TCAV
to medical image analysis, including diabetic retinopathy
(DR), cardiac MRI, breast cancer detection, and skin lesion
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classification [42], [276], [278], [279], [280], [281]. More
specifically, TCAVwas used to identify significant diagnostic
features like microaneurysms or aneurysms for DR and to
assess clinically meaningful biomarkers, such as ventricular
ejection in cardiac MRI [276], [278], [279]. Additionally,
TCAV has been extended to regression problems and used in
skin lesion classification to highlight important dermoscopic
features [42], [277]. TCAVhas also been used to evaluate how
features, such as temperature gradients or vascular structures,
affect classification decisions in infrared breast images [60].
TCAV with a discovering phase enhances AI interpretability
in cardiac MRI by identifying key features linked to cardiac
conditions, providing clinically meaningful explanations, and
a quantitative measure of feature importance while reducing
pre-processing time [278].
Prototype-Based: Prototype-based methods [282], [283],

[284], [285] in AI involve representing data points using
a set of prototype examples that capture the essence of
different classes or decisions. Each prototype serves as a
reference point for classifying new samples, mainly based
on their similarity to these prototypes. Prototype-based
methods involve using representative examples or prototypes
to explain and interpret model predictions [286]. In medical
imaging, studies have used prototype-based methods for
various applications, including lesion classification, thyroid
nodule diagnosis, cancer detection, and COVID-19 detection
from chest X-rays [42]. In addition, ProtoTree, a Prototype-
based method, is used in infrared breast image classification
by employing a decision tree structure where each leaf repre-
sents a prototype for a class of images and classifies images
based on their proximity to these prototypes [60]. Techniques,
such as influence functions and variational autoencoders
(VAEs), have been used to identify significant features,
cluster image patches, and generate visual interpretations of
prototypes, aiding in understanding and explaining model
predictions and improving diagnostic accuracy [42].

C. FAIR AI
Fairness in AI could be classified into three different
strategies, including pre-processing, in-processing, and post-
processing strategies. These techniques are mainly based
on when and how bias detection and mitigation techniques
intervene in the AI model pipeline (Figure 2). Pre-processing
methods involve organizing or adjusting the input data to
mitigate bias before training an AI model. Common methods
include data reweighting, which assigns different weights
to samples to correct imbalances, and data anonymization,
which removes sensitive attributes to prevent discrimination
based on protected characteristics. Other methods, such
as data resampling and adversarial debiasing, are also
employed to ensure fairness in the model’s performance [31],
[59], [287], [288], [289], [290], [291], [292]. In contrast,
in-processing strategies, such as adversarial training and
fairness constraint methods, intervene during model training
to mitigate bias and enforce fairness [31]. Post-processing

strategies, on the other hand, adjust model outputs to calibrate
predictions and ensure fairness across sub-groups [59].

1) PRE-PROCESSING
Group Rebalancing: Group rebalancing is a technique to
address class or group bias in datasets to ensure that
each group or class is represented more equally, improving
model fairness and performance across diverse categories.
Group rebalancing typically involves techniques, such as data
resampling [288], data reweighting [293], stratified batch-
ing [294], and data augmentation [295]. Data resampling
involves either oversampling minorities or undersampling
majorities in order to ensure a balanced representation
across the classes. In cardiac MR image analysis, the data
resampling methods have been used to ensure that each batch
of data includes an equal representation of all protected
groups, thereby enhancing fairness in the AI model’s training
process [59], [296]. Data resampling and stratified batching
have also been employed to address biases related to
gender, race, and age for deep learning-based segmentation
of the skeletal anatomy of the knee and hip joints in
plain radiographs [28]. Data reweighting could cope with
addressing label noise and imbalanced datasets in medical
images by giving individual weights to training samples to
reduce bias [292]. In medical images, data reweighting can
improve model performance on noisy labeled data, such as
skin lesion datasets, and can be applied to various medical
image classification tasks without requiring pre-estimated
noise distributions or clean data [292]. Data augmentation
artificially boosts the diversity of training data (e.g., images)
by generating variations of existing images, such as through
rotations, flips, or noise addition [297]. Data augmentation
has effectively reduced diagnostic accuracy disparities, such
as those in diabetic retinopathy between different skin
tones [31]. Moreover, the data augmentation method alters
the retinal appearance and diabetic retinopathy status to
address imbalances related to skin color in retinal images
and improve fairness in medical image analysis [298]. It can
also improve the performance and fairness of classifiers in
histopathology, chest X-ray, and dermatology, especially for
underrepresented groups and out-of-distribution cases [297].
Domain Generalization: Domain generalization (DG)

[299] aims to maintain good performance across diverse
and unseen sub-populations by addressing distribution
shifts. DG methods include Group Distributionally Robust
Optimization (GroupDRO), which reduces worst-case loss
through stronger regularization, and Stochastic Weight Aver-
aging Densely (SWAD), which improves model performance
by finding robust flat minima through dense weight sampling.
Another method, Sharpness-Aware Minimization (SAM),
focuses on parameters in regions of consistently low loss
to enhance generalization [296]. In medical imaging, DG is
crucial because AI models trained on data from specific
hospitals or populations might not generalize effectively
to data from different sources or patient demographics.

58242 VOLUME 13, 2025



S. Amirian et al.: State-of-the-Art in REF-AI for Medical Image Analysis

DG techniques aim to improve model robustness and fairness
by minimizing domain-specific biases and ensuring that the
learned features represent the underlying medical conditions
rather than the characteristics of a particular dataset.

2) IN-PROCESSING
Adversarial Training: Adversarial training [300] is a compu-
tational strategy to address biases by enhancing the primary
model’s performance on the target variable while preventing
a secondary model from predicting sensitive attributes based
on the primary model’s features [31], [296]. Adversarial
training has been shown to effectively reduce biases in
skin lesion classification [31]. Adversarial training was
also employed to predict HIV diagnosis from MRI scans,
identify sex differences in adolescents using data from the
National Consortium on Alcohol and Neurodevelopment in
Adolescence (NCANDA), and identify bone age from plain
radiographs [301]. This method can achieve accurate predic-
tions while reducing biases related to confounder [301].
Fairness Constraint: Fairness constraint [302] is a mech-

anism incorporated into machine learning models to ensure
that predictions are not influenced by sensitive attributes in
the data, such as gender or race [303]. In medical imaging,
fairness constraints can be applied to prevent disparities in
diagnostic accuracy based on protected attributes, such as
age, gender, race, and ethnicity to ensure equitable treatment
across different patient demographic groups. More specif-
ically, the fairness constraint has been utilized in artificial
neural network architectures for dermatology medical image
analysis, which involves the introduction of an unfairness
score, which is the difference in precision between light
and dark skin datasets, thus, it could help to minimize this
score through targeted fairness constraints [304]. The fairness
constraint is applied to a multiexit convolutional neural
network (ME-CNN) to achieve fairness in the diagnosis
of dermatological disease without using sensitive attributes.
This addresses concerns about privacy and availability while
improving discrimination based on low-level features and
optimizing the accuracy and fairness balance for each test
instance [305].
Fair Meta-Learning: Fair meta-learning is a method that

trains a model to optimize both accuracy and fairness
by introducing a meta-fair classifier into an AI-powered
model [59]. For example, in tasks like cardiac MR image
segmentation, this method has been used to handle image
segmentation and classification of protected attributes in a
multi-task learning framework. This approach aims to ensure
that no single group disproportionately affects the learning of
the model, thus promoting fairness between different groups
of patients in medical imaging [59].
Subgroup-Tailored: Subgroup-tailored modeling [28],

[306], [307] enhances model performance for minority
groups by training individual AI models specific to each
group, enabling evaluation of group-specific AI models’
effectiveness in mitigating bias and improving overall

fairness. In medical imaging, the subgroup-tailored modeling
method, applied to automated image segmentation of knee
and hip anatomy using plain radiographs, improved fairness
by reducing racial biases [28]. This tailored strategy ensures
that the AI model(s) perform well in diverse populations,
addressing potential disparities, and improving the general
fairness in medical image analysis.

3) POST-PROCESSING
Equalized Odds Post-Processing: Equalized odds post-
processing (EOP) [308] corrects the output of an existing
AI algorithm to satisfy equalized odds, a fairness measure
requiring privileged and unprivileged groups to have identical
false positive and false negative rates. It happens by solving a
linear program to adjust output labels probabilistically [59],
[71], [309]. EOP is applied to achieve group fairness in chest
X-ray classifiers [65].
Calibrated Equalized Odds Post-Processing: Calibrated

equalized odds post-processing [310] builds upon the equal-
ized odds approach. However, it adjusts the output labels
by optimizing classifier scores to probabilistically meet the
equalized odds requirement. It mainly focuses on ensuring
that the adjusted predictions are both well-calibrated and
fair [59], [71], [309].
Reject Option Classification: Reject option classifica-

tion [65] aims to reduce bias by adjusting predictions
for cases where the AI model is uncertain. It works by
giving preference to unprivileged groups and reducing the
advantages for privileged groups within a specific confidence
range around the decision boundary. This method uses
probabilistic classifiers or ensemble classifier disagreements
to make decisions in high-uncertainty situations without
changing the original data or model. It also allows for flexible
control over fairness, and it can handle multiple sensitive
attributes at the same time [59], [71], [309].

IV. REF-AI EVALUATION METRICS
This section provides a brief overview of the evaluation
metrics available for REF-AI.

A. RESPONSIBLE AI
Evaluating responsible AI requires qualitative and quantita-
tive approaches, focusing on societal impacts, stakeholder
engagement, robust governance, and adherence to ethical
principles. This requires conducting iterative assessments
within the AI lifecycle, ranging from requirement analysis
to development and deployment. These assessments should
integrate qualitative feedback from diverse groups, including
clinicians, patients, policymakers, and marginalized com-
munities, with quantitative analysis. In addition, methods
such as surveys, participatory design evaluations, and ethical
impact assessments are employed to ensure comprehensive
and inclusive evaluation [2], [99], [311], [312], [313],
[314], [315].

Unlike explainable and fair AI, which benefits from
well-established metrics and measurement approaches,
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TABLE 1. An overview of the key methodologies, strategies, and techniques categorized under the REF-AI framework.

responsible AI lacks widely accepted standardized metrics.
Instead, it relies on qualitative evaluations and emerg-
ing frameworks that address diverse aspects such as
accountability, transparency, robust governance, data privacy,

and ethical compliance. The challenge lies in developing
cohesive standards to measure the subjective dimensions
of responsibility in AI [2], [8], [164], [176], [316], [317],
[318], [319].
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B. EXPLAINABLE AI
Subjective and objectivemetrics provide different approaches
for evaluating AI explanations, each with its own methods
and goals. Together, these metrics ensure human inter-
pretability and AI model transparency (Figure 3). Here,
we briefly discuss these metrics.

1) SUBJECTIVE METRICS
Subjective metrics include human evaluation to assess the
quality and accuracy of AI explanations. These metrics rely
on human judgment to assess how well an AI explanation
is understood and how it influences trust among AI and
end-users. This process often requires expert insights to
determine if explanations align with human understanding
and expectations. These metrics are often gathered through
user studies or surveys, with evaluators assessing the
relevance and correctness of AI explanations to provide more
precise insights into the model’s behavior and its decision-
making processes [42], [320], [321].

2) OBJECTIVE METRICS
In contrast, objective metrics focus on measurable criteria
(e.g., fidelity and consistency). These objective metrics in AI
explainability could be divided into model-based and specific
metrics.
Model-Based Metrics: These metrics focus on directly

interacting with an AI model’s predictions or processes, pro-
viding clear and measurable evaluations. Attribution-based
metrics could check how well an AI explanation matches
the AI model’s importance assigned to different features.
For example, they might measure the accuracy of saliency
maps, the relevance of highlighted areas, or correlation and/or
IoU among areas automatically detected by AI and those
manually provided by the domain experts. Perturbation-
based metrics look at how changes to the input or features
affect the model’s predictions, helping to understand the
stability and reliability of the explanations. Additionally,
model performance metrics assess how well the explanations
reflect the model’s behavior, often by tracking changes in
accuracy or consistency when the inputs are altered [322],
[323], [324], [325], [326], [327].

• Attribution-Based Metrics: To comprehensively eval-
uate attribution-based metrics, various methods could
assess how accurately an AI explanation highlights
relevant features so that key regions influencing model
predictions are correctly identified and aligned with
ground truth areas. These metrics could be categorized
as follows.
Pointing Game Metrics: Pointing game metrics eval-
uate the precision of the saliency maps in identifying
the relevant regions [42], [212], [328]. Pointing game
metric measures how well the maximum point from
the saliency map aligns with the bounding box of a
specific class. A hit is counted if the point falls within the
bounding box; otherwise, it’s a miss, and the accuracy is

obtained from the number of misses and hits for each
object [212].
Attribution Localisation Metrics: Attribution Locali-
sation metrics [329] are calculated as the ratio of the sum
of positive attributions within the bounding box to the
sum of overall attributions [330], [331].
Top-k Intersection: Top-k intersection [332] evaluates
the consistency of feature importance between different
images. The top-k intersection measures the overlap of
the top-k most relevant features between the original and
perturbed image [42], [332].
Concept Influence Score: This score assesses the
relevance of high-level visual concepts in AI model
predictions. The concept influence score measures the
pixel-wise intersection between an explanation and
a segmentation map, focusing on semantic concepts
influencing predictions [42], [333].
Relevance Mass Accuracy: Relevance mass accu-
racy [334] evaluates how well the ground truth mask
captures the relevant features. It is calculated as the
ratio of the sum of positive relevance values within the
bounding box to the sum of all positive attributions in
the image [42], [334], [335], [336].
Relevance Rank Accuracy: Relevance rank accu-
racy [334] assesses the concentration of essential
features within the relevant areas. It determines how
high-intensity relevance is included within the ground
truth mask [42], [334], [336], [337].
Faithfulness Correlation: Faithfulness correlation
[338] evaluates the faithfulness of the explanation to
the model’s predictions and measures the correlation
between the explanation and the actual model behav-
ior [42], [334], [335], [336], [337], [339].

• Perturbation-Based Metrics: Perturbation-based met-
rics assess how changes in features affect AI model
predictions. By modifying specific input areas, pixels,
or model parameters, these metrics test the stability and
consistency of AI explanations by observing how the
output and explanations change. These metrics could be
classified as follows.
Deletion and InsertionMetrics:Deletion and insertion
metrics [340] examine the effect of removing or adding
important pixels to observe changes in class probability.
Deletion measures class probability decrease, when key
pixels are removed, while insertion tracks probability
increasewith added pixels [42], [58], [340], [341], [342].
Remove And Retrain: Remove and retrain (ROAR)
[343] determines the effect of feature removal on
model performance. ROAR involves perturbing the
highest-scoring regions, retraining the AI model on
these perturbed images, and checking for changes in
accuracy [341], [342], [344].
Remove and Debias: Remove and debias (ROAD)
[345] reduces computational costs while evaluating
feature importance. ROAD measures the impact of
removing features without retraining, using mutual
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FIGURE 3. The taxonomy of the responsible, explainable, and fair artificial intelligence (REF-AI) evaluation metrics for medical image analysis.

information to assess the contribution of low-important
pixels [42], [345].
Area Over Perturbation Curve: Area Over Pertur-
bation Curve (AOPC) [340] quantifies the impact of
perturbations on the saliency map’s relevance. It mea-
sures the difference in certainty of object presence with
and without perturbations and higher AOPC values
indicate greater feature relevance [346], [347], [348].
Local Lipschitz Estimate: Local Lipschitz [349] Esti-
mate assesses the stability of explanations across similar
inputs and evaluates the consistency of explanations for
similar instances using Lipschitz continuity [349], [350].
Region Perturbation: Region perturbation [340] mea-
sures the contribution of different regions to the model’s
output, and it perturbs specific regions in the input to
evaluate their impact on the model’s predictions [340],
[351], [352], [353], [354].
Pixel-Flipping: Pixel-flipping [239] assesses the impor-
tance of specific pixels in the explanation, and it
tests how flipping individual pixels affects the model’s
predictions [253], [355], [356].
Model Parameter Randomization: Model parameter
randomization [357] assesses how explanations hold

up under changes, and it evaluates the robustness of
the explanation by randomizing model parameters and
checking for consistency [42], [58], [228].

• Model Performance Metrics: Model performance met-
rics offer essential insights into the reliability and
transparency of AI model explanations by evaluating
how well these explanations align with the model’s
decision-making andmaintain consistency under similar
conditions. This includes two metrics as follows.
Fidelity: Fidelity [358] measures how closely the meth-
ods resemble or mimic the decision-making process of
the AI model, where high fidelity means that the AI
explanation is a true representation of how the model
makes its decisions [342], [358], [359], [360], [361].
Stability: Stability [362] measures the consistency
or coherence of explanations when handling similar
instances, often calculated using the Lipschitz constant,
which quantifies the sensitivity of AI explanations to
input changes; a lower value indicates higher stabil-
ity [42], [342].

Specific Metrics: These sorts of metrics target specialized
evaluations, such as assessing counterfactual explanations
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and concept learning models for their interpretability and
adherence to human reasoning patterns. They could be
classified as follows.
Counterfactual Validity: Counterfactual validity (CV)

[363] ensures that the counterfactual explanation reflects a
valid change in the prediction of the model and measures
whether a counterfactual explanation corresponds to a change
in the prediction of the classifier. If the classifier predicts an
image as normal, the counterfactual should be classified as
abnormal [364], [365].
Frechet Inception Distance: Frechet inception distance

(FID) [366] evaluates how visually similar or different
the counterfactual explanation is compared to the original
input. FID quantifies the visual quality of counterfactual
explanations by calculating the feature distance between the
original input image and the counterfactual image [367],
[368], [369], [370].
Foreign Object Preservation: Foreign object preservation

(FOP) [366] ensures that the counterfactual explanation
maintains the relevant details of the original input. FOP
checks whether the counterfactual explanation retains indi-
vidual patient information [66], [371].
Instance/Importance Metric: This will be divided into IM1

and IM2 metrics [372]. These metrics evaluate the consis-
tency and quality of counterfactual explanations by analyzing
reconstruction errors and similarities. While IM1 calcu-
lates the reconstruction error ratio between counterfactual
instances, IM2 compares similarities among reconstructed
counterfactual instances [364], [373], [374], [375], [376].
Statistical Significance Test for Concepts: A statistical

significance test for concepts helps avoid false results by
ensuring that the concepts used are important and relevant
to the class prediction. It checks the stability and importance
of concept activation vectors in concept-based models.
A statistical test, like a two-sided t-test, is used to see if
the concept activation vectors are strongly related to class
predictions [276], [377], [378], [379], [380], [381], [382].

C. FAIR AI
Selecting appropriate fairness metrics is essential for evalu-
ating equity in AI-enabled medical imaging models, as these
metrics help identify and quantify biases, preventing AI
systems from disproportionately disadvantaging specific
groups. Researchers have developed a variety of fairness
metrics to gain valuable insights into AI model performance,
including demographic parity, equal opportunity, and pre-
dictive quality disparity [383], as illustrated in Figure 3).
This section provides an overview of AI fairness metrics,
with particular emphasis on their application in AI-powered
medical imaging.
Equalized Odds: Equalized odds (EqOdd) [308] is a

fairness metric that requires both the True Positive Rate
(TPR) and the False Positive Rate (FPR) to be equal across
different sensitive and/or protected groups (e.g., sex, age,
race). This means that the model should make correct

predictions (True Positives) and incorrect predictions (False
Positives) at the same rate for each group, ensuring no group
is disadvantaged in either aspect [296], [384], [385], [386].
Equal Opportunity: Equal opportunity (EO) [308] is a

simpler version of Equalized odds. It focuses on equalizing
the True Positive Rate (TPR) across different sensitive and/or
protected groups. However, it does not require the rate of
incorrect positive predictions (False Positive Rate or FPR) to
be the same across groups [304], [387], [388], [389], [390].
Demographic Disparity: Demographic disparity (DP)

[302] is a fairness metric that quantifies the percentage
difference in positive outcomes across different demographic
groups, measuring the diversity of positive outcomes for each
sensitive and/or protected group [304], [391], [392], [393].
Predictive Quality Disparity: Predictive quality disparity

(PQD) [383] measures the disparity in prediction quality
among subgroups by calculating the ratio between the lowest
and highest accuracy across those groups [304], [305],
[383], [394].
Skewed Error Ratio: Skewed error ratio (SER) [395]

evaluates fairness by measuring the skew or imbalance in
error rates, such as false positives and false negatives. These
are measured across specific groups by calculating the ratio
of the highest to lowest error rate among those groups,
with higher values indicating more significant bias and
values closer to one reflecting lower bias [28], [59], [395],
[396], [397].
Binary Cross Entropy:Binary cross entropy (BCE) is a loss

function used to measure how well the predicted AI model’s
outcomes in a binary fashion align with the actual binary
outcomes [65], [296], [398].
Expected Calibration Error: Expected calibration error

(ECE) [399], [400]measures howwell predicted probabilities
align with true outcomes, indicating group sufficiency. While
lower ECE confirms consistent threshold performance across
different groups, higher ECE values may suggest a need for
different optimal thresholds [65], [296], [310], [401].
Pairwise Fairness Difference: Pairwise fairness difference

(PFD) [388] measures fairness by comparing the differences
in AI model’s outcomes between pairs of subgroups, where
a large PFD indicates significant disparities and a lack
of fairness in the AI model’s predictions [402], [403],
[404], [405].
Equity-Scaled Dice Coefficient: Equity-scaled dice coef-

ficient (ES-Dice) adjusts the Dice coefficient to account
for performance disparities across subgroups, providing a
straightforward evaluation and more interpretable measure
of fairness by comparing overall and subgroup-specific Dice
coefficients [67], [406], [407].

V. CASE STUDY: HIP AND KNEE BONY ANATOMY
SEGMENTATION USING REF-AI
AI-powered segmentation of hip and knee bony anatomy
is essential for pre-surgical planning, prosthesis design,
and the evaluation of musculoskeletal disorders. However,
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TABLE 2. The summary of REF-AI evaluation metrics.

challenges such as variations in patient anatomy, differences
in imaging modalities, and demographic diversity raise
important questions about the need for responsible and
equitable AI solutions. As AI rapidly grows in healthcare,
developing sophisticated AI systems that can address these
challenges and improve equitable AI utilization for all
patient groups becomes increasingly important. Furthermore,
without adequate explainability, the adoption of AI in
healthcare may be slowed, limiting its potential to improve
outcomes across diverse populations. That being said, the
explainability of AI models is important to build trust
and transparency in clinical settings, enabling healthcare
providers to understand and validate AI-driven insights with
a high level of confidence [408].

This case study explores how REF-AI principles
can address these challenges by integrating fairness,

transparency, and accountability into AI-driven image
segmentation techniques. By leveraging insights and
methodologies from our recent work in the literature [28],
we aim to demonstrate how the application of REF-AI
principles improves technical performance and embeds
ethical considerations into the clinical use of AI.

A. METHODOLOGY
The pipeline for REF-AI in bony anatomy segmentation
includes the following:

1) DATA GOVERNANCE
Data was sourced from the Osteoarthritis Initiative (OAI)
dataset [409], a diverse imaging repository that includes
varying demographics, imaging machines, and clinical sites,
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FIGURE 4. Generated Grad-CAM heatmaps for hip bony anatomy segmentation across the protected attribute race.

ensuring equitable representation of medical images. The
OAI dataset is a longitudinal study that provides imaging
such as plain knee radiographs, MRIs, and associated clinical
outcomes. The OAI dataset’s design includes standardized
imaging protocols across multiple clinical sites, ensuring
consistency and high-quality data collection. Furthermore,
demographic diversity was carefully accounted for, with
participants representing various ages, sexes, and ethnic
backgrounds, allowing for equitable AI training and evalu-
ation. OAI’s data governance adhered to established privacy
frameworks, including HIPAA, ensuring patient confidential-
ity. Comprehensive metadata documentation supported data
traceability, enabling reproducibility and regulatory compli-
ance. These qualitative and quantitative measures ensure that
the dataset meets the ethical and technical requirements to
develop fair and reliable segmentation models.

2) ALGORITHM DESIGN
To develop advanced AI-powered segmentation models,
we utilized a U-Net architecture with a pretrained ResNet18
backbone, leveraging transfer learning to improve feature
extraction. To address class imbalances, we applied data
balancing techniques such as undersampling of overrep-
resented classes. Stratified sampling was used to reflect
the demographic diversity of the population in the training
and testing datasets, particularly in terms of sex and
race. Furthermore, we trained specialized AI models for
specific protected attributes, enabling us to evaluate group-
specific [28], [410] performance and implement targeted bias

mitigation strategies. These strategies were designed to make
the AI-powered segmentation models equitable and reliable,
providing accurate results across diverse patient populations.

3) AI EXPLAINABILITY USING GRADCAM
Grad-CAM [34], [35] was utilized to provide visual expla-
nations of the segmentation process, enabling clinicians to
understand the AI model. Grad-CAM highlighted regions
of interest in the imaging data that most influenced the
model’s predictions, offering clear transparency into the
decision-making process. Grad-CAM visualizations, shown
in Figures 4 and 5 demonstrate the potential to align AI
outputs with clinician expectations and build trust in the
system.

4) FAIRNESS EVALUATION
The fairness of the various strategies was evaluated using the
skewed error ratio (SER) [395]. This metric quantifies bias
towards protected attributes by measuring the disparities in
the model’s prediction errors. SER is calculated by dividing
the highest error rate to the lowest error rate among the
protected or sensitive groups. A higher SER value indicates
greater bias, while values closer to one reflect minimal bias
and greater fairness in model performance.

B. RESULTS
The application of the REF-AI framework to hip and
knee bony anatomy segmentation yielded promising results.
By integrating diverse demographic data from the OAI
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FIGURE 5. Generated Grad-CAM heatmaps for knee bony anatomy segmentation across the protected attribute sex.

dataset [409], the study achieved broad representation and
equitable model performance. The advanced segmentation
models demonstrated robust performance in identifying
bony structures across varying patient demographics. Bias
mitigation strategies minimized disparities across protected
demographic groups, as indicated by the SER values in
Tables 3 - 6. Furthermore, Grad-CAM visualizations, shown
in Figures 4 and 5, successfully highlighted key anatomical
landmarks. These visualizations aligned the AImodel outputs
with clinician expectations, fostering trust in the system.

Analysis of Tables 3 - 6 reveals key trade-offs between
segmentation accuracy (measured by IoU) and fairness
(evaluated using SER). Specifically, incorporating fairness
into the segmentation algorithm often reduces performance
for either one or both protected attribute groups. These
trade-offs can be seen across all the results. For example,
in Table 5, the Baseline model achieves higher IoU scores but
demonstrates a higher disparity in fairness, with an SER of
1.112 across racial groups. On the other hand, while improv-
ing fairness (SER=1.050), the group-specific strategy [28]
results in a reduction in IoU for the protected subgroups,
demonstrating that achieving equitable performance often
necessitates compromising overall segmentation precision.

Furthermore, the results demonstrate that no single bias
mitigation strategy is universally optimal across all protected
groups. For example, for hip segmentation, the Balanced
model performs best for sex, whereas the Group-specific
model is optimal for race. In contrast, for knee segmentation,
the Stratified model yields the best performance for both sex
and race.

C. CASE STUDY HIGHLIGHT
This case study demonstrates the significance of integrating
REF-AI principles inmedical imaging. The results emphasize
the value of comprehensive data governance, with OAI’s
standardized imaging protocols and privacy frameworks
ensuring high-quality, ethically compliant datasets. Targeted
bias mitigation strategies significantly addressed disparities
related to demographic diversity, including variations in
sex and race attributes. These efforts enhanced fairness
and contributed to more inclusive and representative AI
model performance. Moreover, AI explainability tools such
as Grad-CAM provided critical insights into the model’s
decision-making process. These scientific visualizations
allow researchers and clinicians to better understand how the
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TABLE 3. IoU and fairness scores for hip segmentation across the
protected attribute sex.

TABLE 4. IoU and fairness scores for knee segmentation across the
protected attribute sex.

TABLE 5. IoU and fairness scores for hip segmentation across the
protected attribute race.

TABLE 6. IoU and fairness scores for knee segmentation across the
protected attribute race.

AI model arrived at its predictions, enhancing transparency
and alignment with clinical reasoning. This transparent
approach builds trust among healthcare professionals and
bridges the gap between AI-driven insights and real-world
clinical applications.

Overall, this case study illustrates how the thoughtful
application of REF-AI principles can enhance the technical
robustness and ethical integrity of AI-powered medical
imaging solutions, ultimately improving patient and clinical
outcomes and equity in healthcare.

VI. DISCUSSION AND OUTLOOK
This paper explores the integration of responsibility, explain-
ability, and fairness in AI, particularly within medical
image analysis. A few years ago, the primary focus in AI
development was mainly on improving AI model accuracy.
However, as AI continues to play an increasing role in
healthcare, it is clear that the conversation should be
expanded. Today, accuracy for AI algorithms alone is no
longer sufficient, meaning that the success of AI models in
healthcare hinges on their performance combinedwith ethical
considerations, especially in responsibility, explainability,
and fairness. These factors are now essential for deploying

1African American.
2African American.

AI technologies in a way that is effective and socially
acceptable.

The AI fairness strategies, including pre-processing,
in-processing, and post-processing, each offer distinct advan-
tages, but their real-world application remains challenging.
Pre-processing methods, such as group rebalancing and data
augmentation, help mitigate biases in datasets before the AI
model is trained, but theymust be carefully calibrated to avoid
overfitting and enhance the AI model’s generalizability. In-
processing strategies, such as adversarial training and fairness
constraints, adjust the learning process to build equitable
predictions. However, they often increase computational
costs and, in some cases, may impact AI model accuracy.
Post-processing techniques, such as equalized odds and
reject option classification, allow for the calibration of
model outputs after training to fine-tune fairness across
various protected and/or sensitive subgroups. However, these
methods alone cannot fully fix potential biases in the data and
AI, thus, a more complete and systematic approach to fairness
is needed. Fairness in AI will not be obtained in isolation. The
challenges of mitigating biases related to sex, race, ethnicity,
age, economic situation, and level of healthcare education
persist in medical imaging, and efforts to enhance fairness
must be balanced with the need for AI model performance.
This balance is particularly challenging in healthcare, where
the stakes are high and any compromise in AI model accuracy
can have profound consequences. Furthermore, the need
for fairness must be considered in the context of broader
societal values, which can vary significantly across different
cultures, states, and community settings. This underscores
that addressing fairness in AI is not merely a technical
task; it is, however, an ethical imperative that requires
continuous collaboration and dialogue among diverse
stakeholders.

Explainability also plays a significant role in the respon-
sible use of AI systems. As AI becomes more popular in
healthcare systems, it is essential that the AI models are
transparent and their decision-making processes are easy to
understand. This will help to build trust among all end-
users. The evaluation of AI explainability must consider both
subjective and objective metrics. Subjective metrics ensure
that AI explanations are aligned with human understanding,
while objective methods, such as attribution-based, offer
a more quantitative understanding of how models make
decisions. However, these metrics must be applied carefully
to avoid oversimplifying or overcomplicating complex AI
models.

Responsibility in AI extends beyond fairness and explain-
ability; it requires ethical principles that guide the entire AI
lifecycle. Developing standardized metrics for responsible
AI remains a significant challenge. Current frameworks
often focus on qualitative evaluations, such as stakeholder
engagement and ethical compliance, but there is a need for
more solid and universally applicable standards. One promis-
ing direction is the integration of fairness, accountability,
and transparency frameworks, which could help establish
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consistent guidelines for responsible AI across different
healthcare domains. In medical imaging, where the impact
of AI on human lives is profound, creating universally
accepted standards that balance fairness, accountability, and
transparency will be significant for guiding ethical decision-
making.

Building truly responsible, explainable, and fair AI (REF-
AI) in medical imaging informatics will require a collab-
orative and multidisciplinary framework that engages all
parties and users. This includes technical experts, developers,
AI programmers, patients, caregivers, healthcare providers,
clinicians, surgeons, physicians, nurses, policy-makers, ethi-
cists, and other relevant groups. Such collaboration is
essential to implementing AI systems that reflect diverse
needs, values, and ethical considerations.

While our study provides a solid review of the current
advancements in REF-AI for medical imaging, it also carries
some limitations. First, it focuses specifically on responsible,
explainable, and fair AI (REF-AI) in medical imaging,
which may limit its applicability to broader AI applications
in healthcare. While the review discusses various REF-AI
methodologies, it does not empirically validate or benchmark
their effectiveness, making it difficult to assess their real-
world performance. Furthermore, the field of AI governance
and ethical AI deployment is rapidly evolving, and some of
the legal or ethical considerations discussed may become
outdated as new regulations emerge. Another limitation is that
the review primarily addresses technical aspects of REF-AI
but does not deeply explore its practical implementation
challenges in clinical workflows.

In conclusion, the intersection of responsibility, explain-
ability, and fairness is essential for developing AI systems
that are ethical, transparent, and trustworthy, particularly in
high-risk domains, such as medical image analysis. While
the advancement of AI fairness offers promising solutions
to detect and mitigate biases, their real-world application
requires careful consideration of trade-offs between fairness
and AI model performance. The role of explainability is
similarly critical, helping to build AI systems that are
transparent and aligned with human understanding. Despite
significant progress, challenges remain in harmonizing these
three pillars of AI responsibility, explainability, and fairness
in complex domains in healthcare. Further research should
prioritize refining these strategies, addressing the ethical
dilemmas associated with their application, and establishing
a standardized framework. This framework would be instru-
mental in developing comprehensive metrics for the design,
development, evaluation, and implementation of REF-AI,
ensuring that these systems are both effective and ethically
sound.
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